

Introduction to Deep Generative Modeling

COMPSCI 589 - Summer 2024

Sajjad Amini

Manning College of Information and Computer Sciences
University of Massachusetts Amherst

Disclaimer

- The financial examples and data presented are for illustrative purposes only.

Image Sources

- All images in this presentation were generated using ChatGPT unless otherwise cited.
- Each image has been created to visually enhance the topics discussed and provide illustrative support.
- For images not generated by ChatGPT, sources are cited directly in the title.

Contents

1 Intuition

2 Concept

3 Approaches

- Autoregressive Modeling
- Variational Autoencoder
- Generative Adversarial Nets
- Diffusion Models

4 Extension to Conditional Generation

5 Applications

6 Deep Autoregressive Models

Section 1

Intuition

Investment Challenge

Figure: Investment Challenge (Budget: $\$1M$, Divesting is not allowed)

Investment Challenge

Figure: Investment Challenge (Budget: $\$1M$, Divesting is not allowed)

Investment Challenge

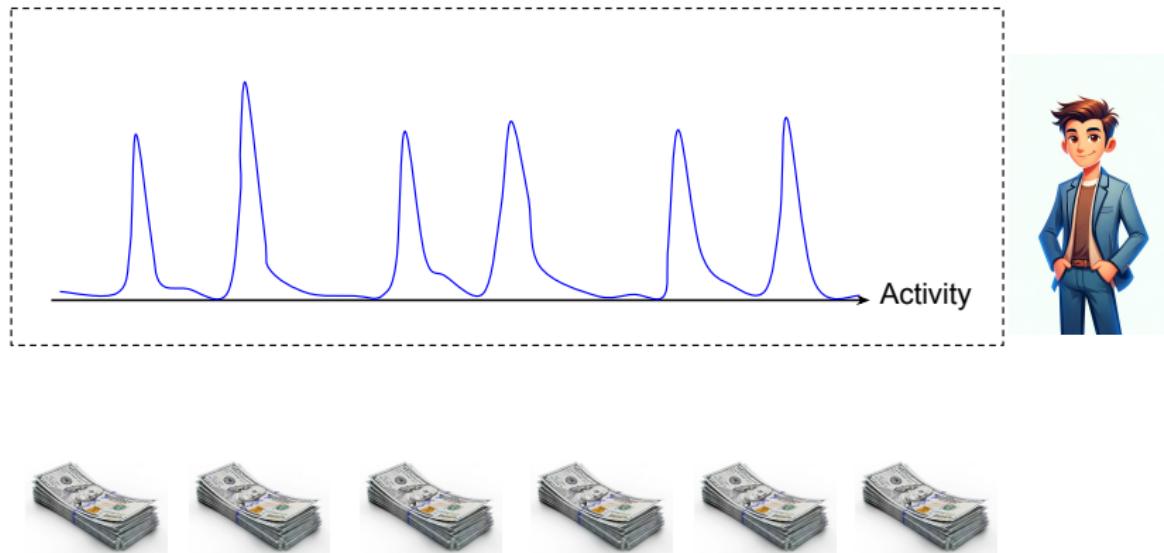


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

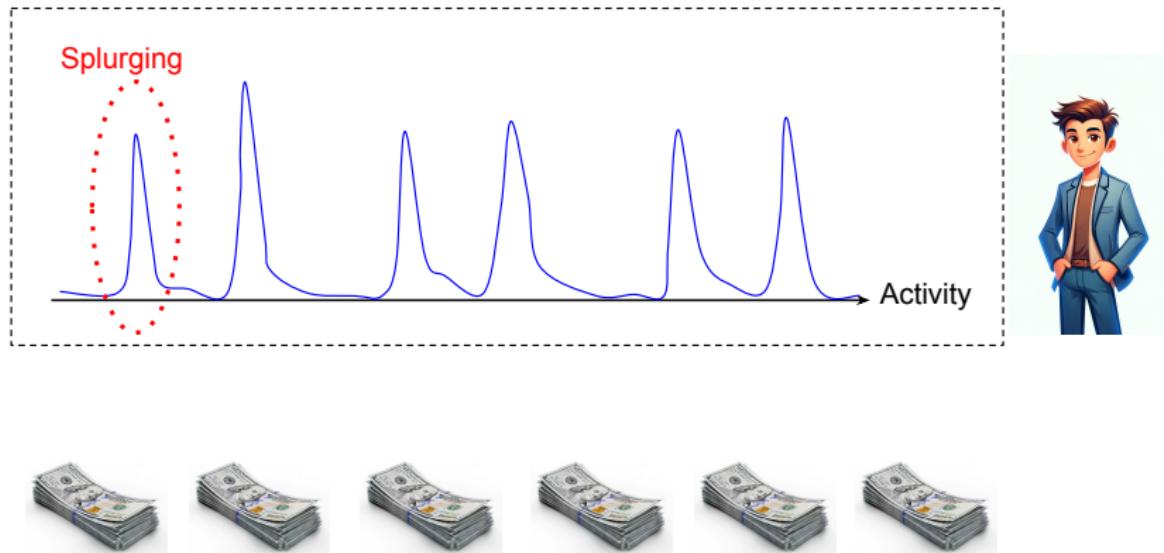


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

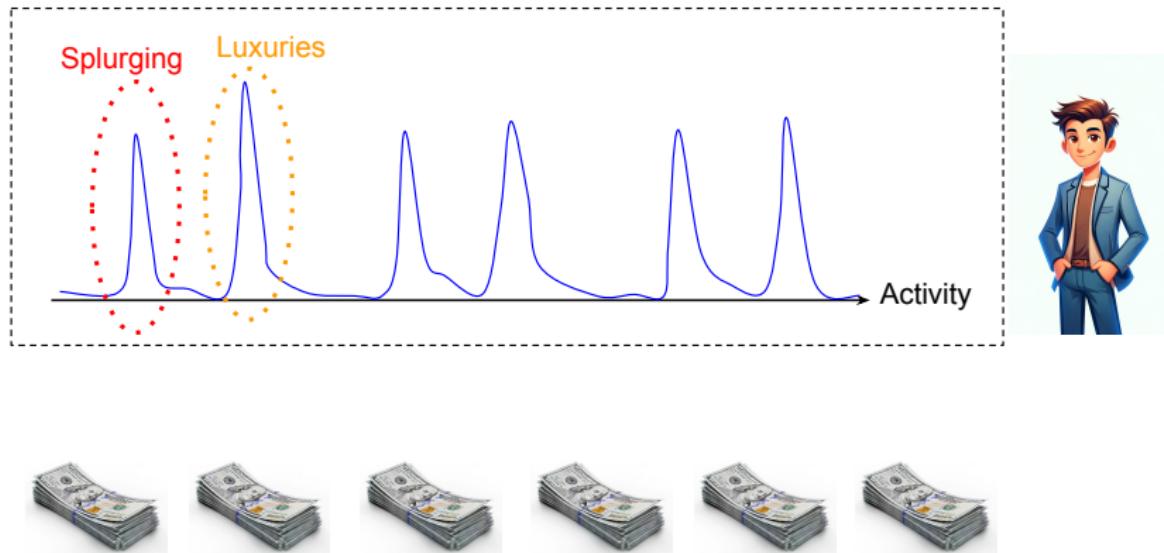


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

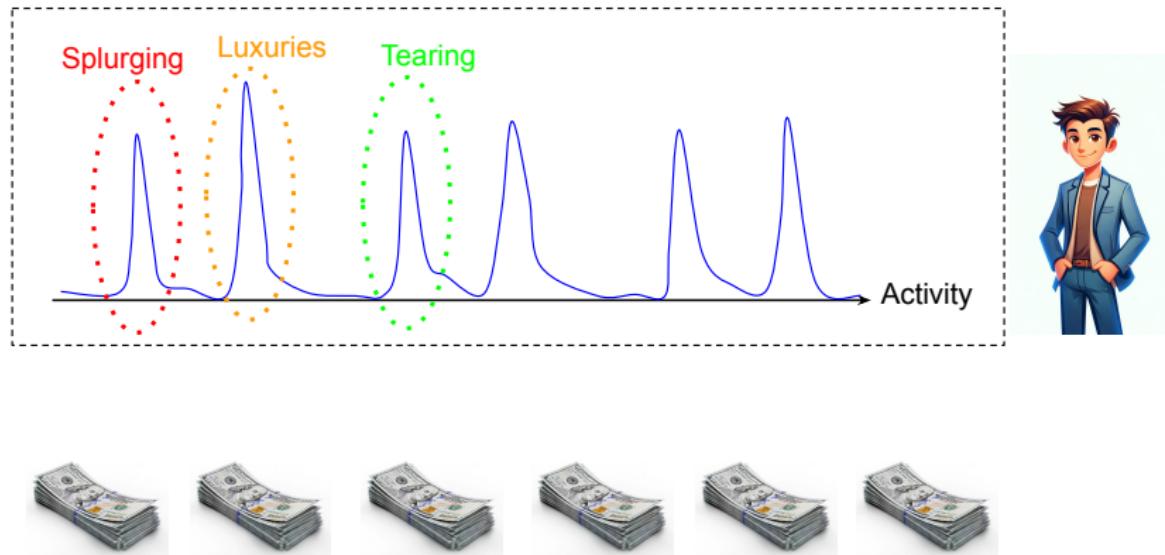


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

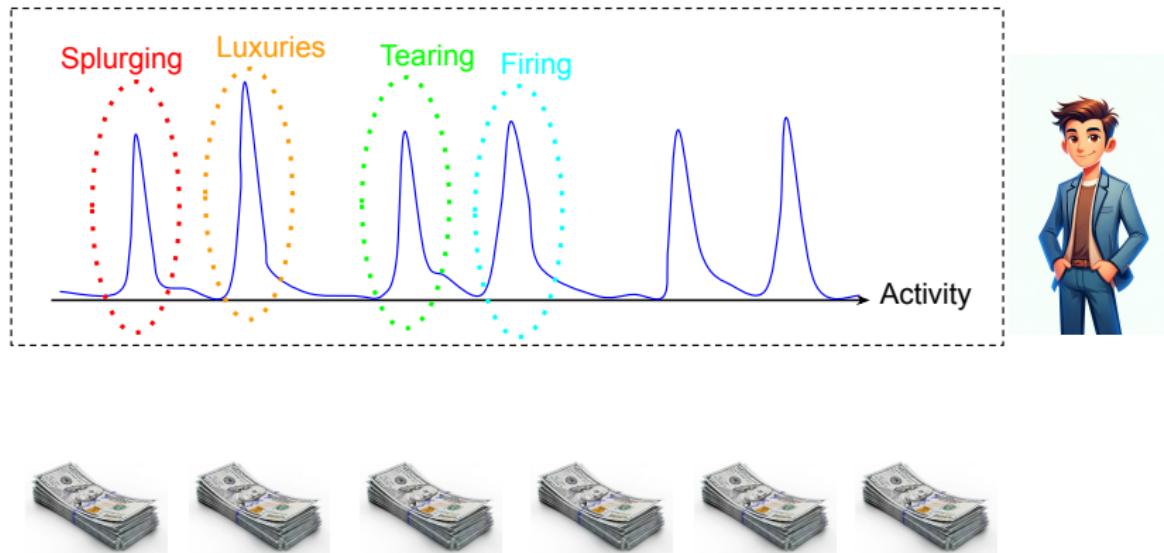


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

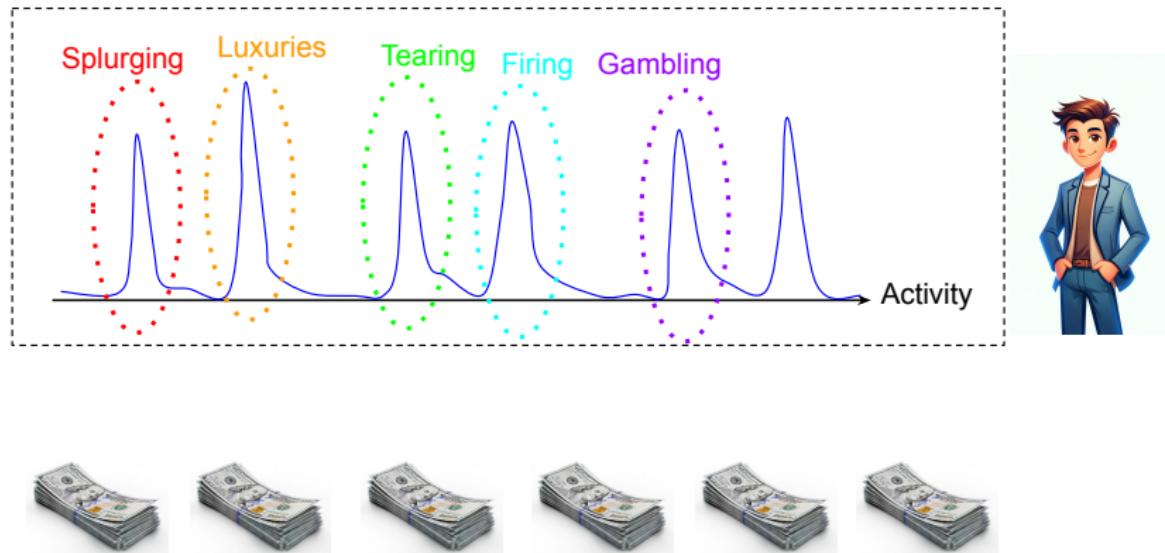


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

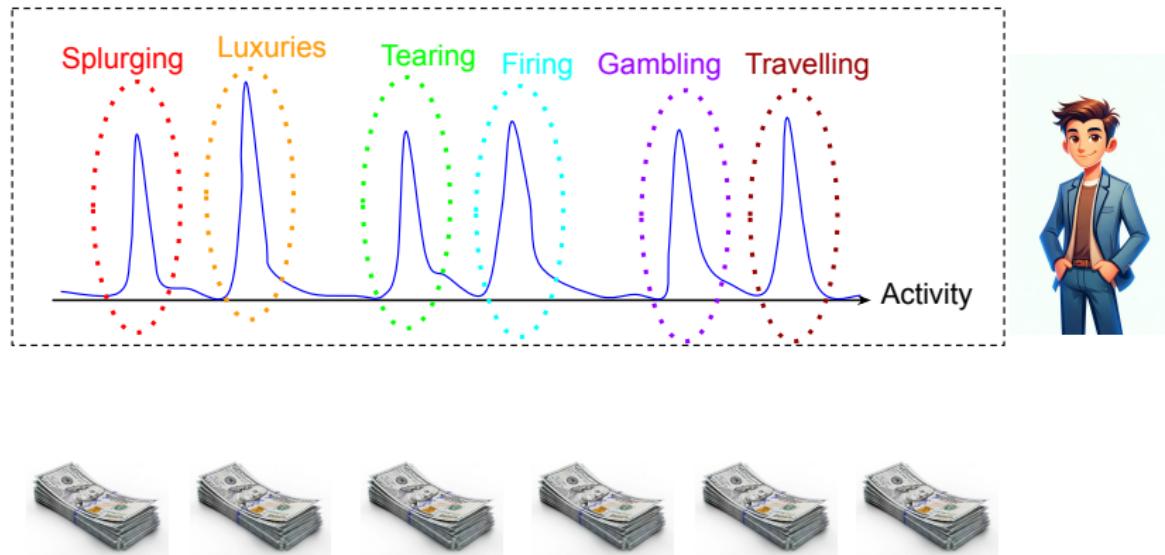


Figure: Investment Challenge (Budget: \$1M, Divesting is not allowed)

Investment Challenge

Figure: Investment challenge with help of investor (Budget: \$1M, Divesting is not allowed)

Investment Challenge

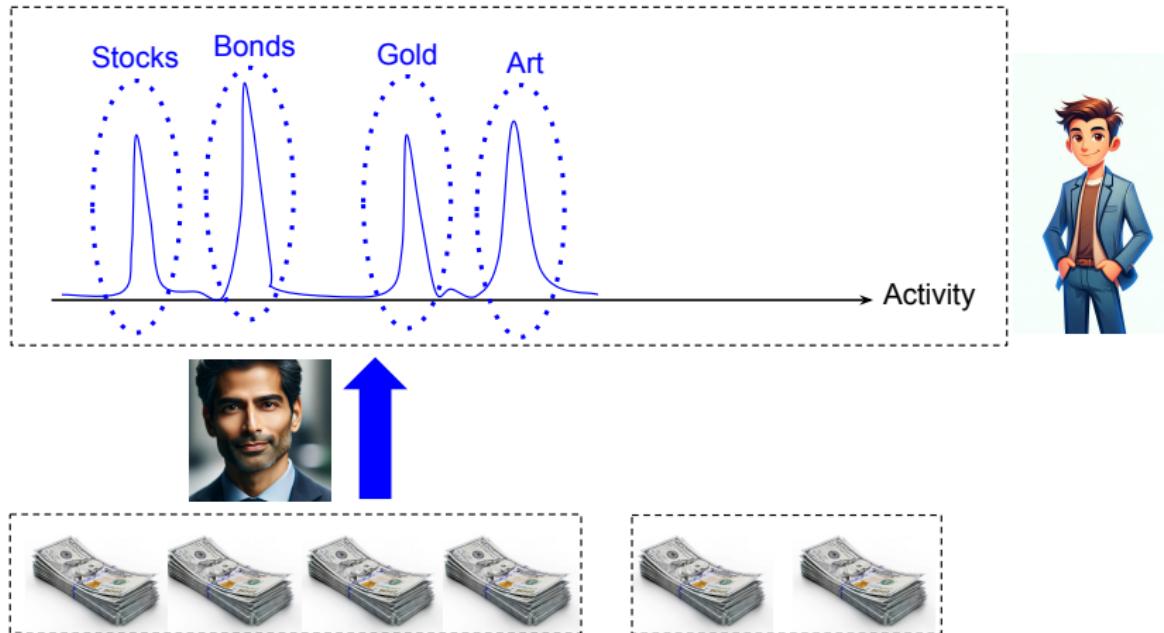


Figure: Investment challenge with help of investor (Budget: \$1M, Divesting is not allowed)

Investment Challenge

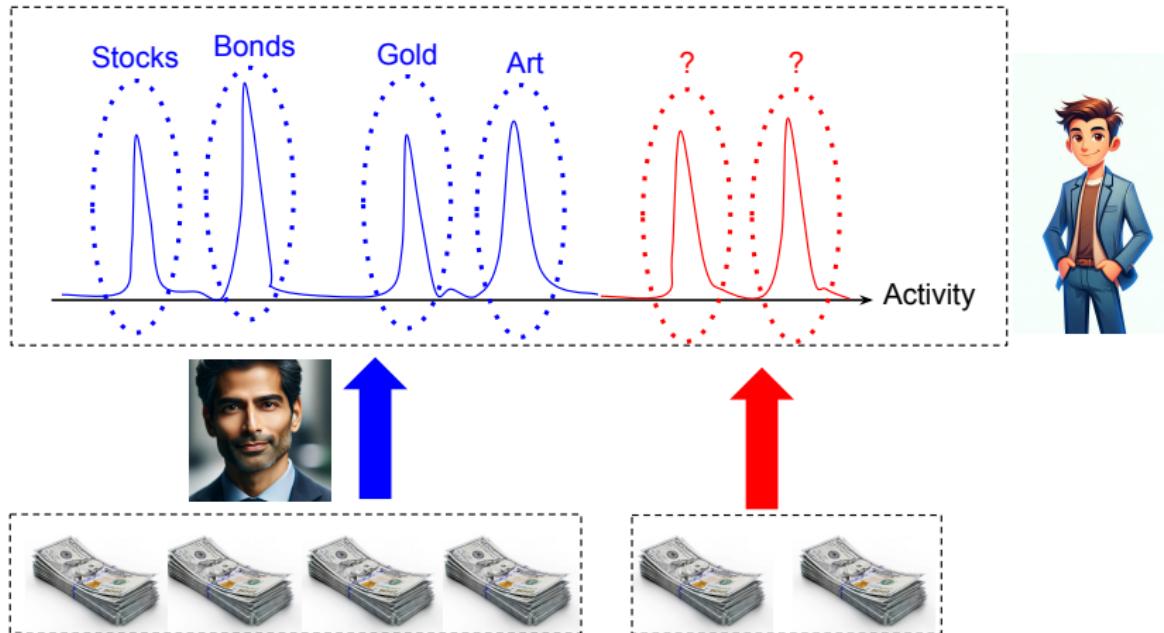


Figure: Investment challenge with help of investor (Budget: \$1M, Divesting is not allowed)

Investment Challenge

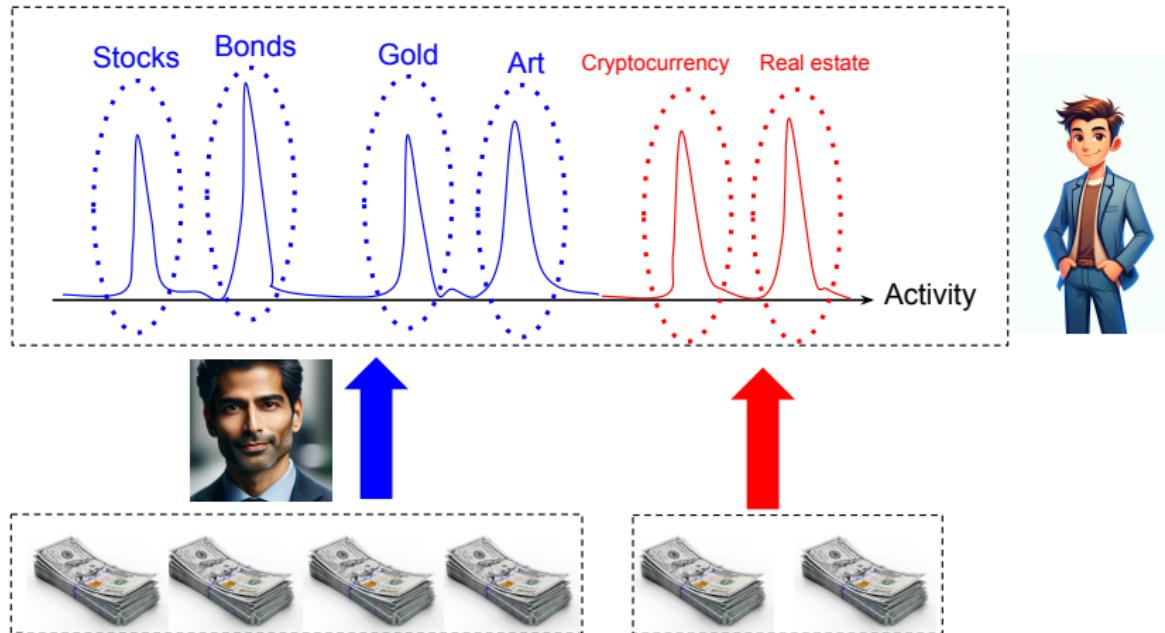


Figure: Investment challenge with help of investor (Budget: \$1M, Divesting is not allowed)

Investment Challenge

Axioms of Investment Challenge	
Limited Budget	

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

Axioms of Investment Challenge	
Limited Budget	

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

Axioms of Investment Challenge	
Limited Budget	
Positivity	

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

Axioms of Investment Challenge	
Limited Budget	
Positivity	INVEST DIVEST

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

Axioms of Investment Challenge	
Limited Budget	
Positivity	INVEST DIVEST

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

	Axioms of Investment Challenge	Axioms of Probability
Limited Budget		
Positivity	INVEST DIVEST	

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

	Axioms of Investment Challenge	Axioms of Probability
Limited Budget		$\int_{\mathbf{x}} p(\mathbf{x}) d\mathbf{x} = 1$
Positivity	INVEST DIVEST	

Figure: From Axioms of our challenge to Axioms of probability

Investment Challenge

	Axioms of Investment Challenge	Axioms of Probability
Limited Budget		$\int_{\mathbf{x}} p(\mathbf{x}) d\mathbf{x} = 1$
Positivity	INVEST DISVEST	$p(\mathbf{x}) \geq 0$

Figure: From Axioms of our challenge to Axioms of probability

Section 2

Concept

Parametric Probability Density Function (PDF)

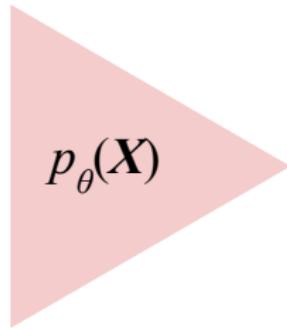


Figure: Your new budget is your parametric PDF

Parametric Probability Density Function (PDF)

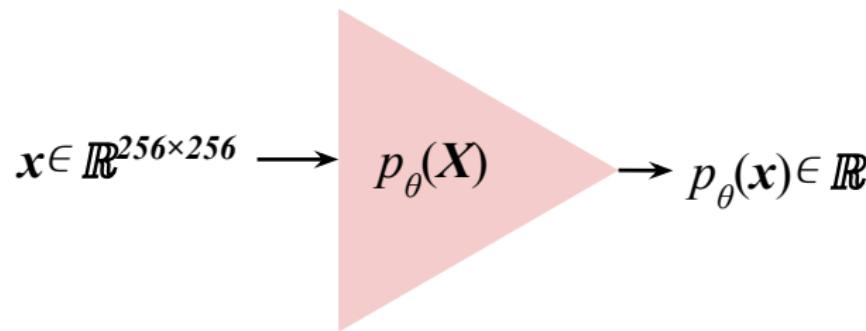


Figure: Your new budget is your parametric PDF

Parametric Probability Density Function (PDF)

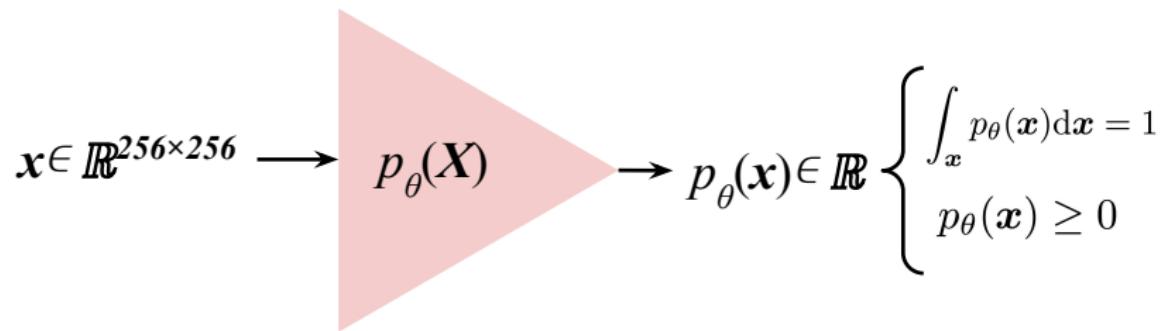


Figure: Your new budget is your parametric PDF

Parametric Probability Density Function (PDF)

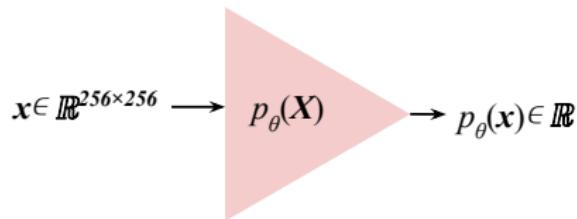


Figure: Your new budget is your parametric PDF

Parametric Probability Density Function (PDF)

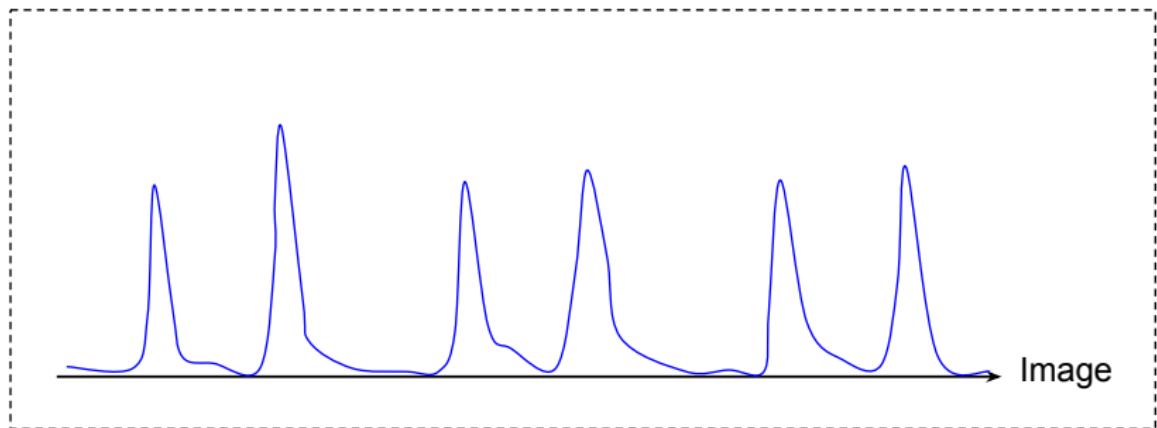
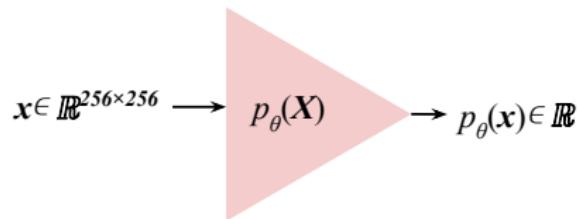


Figure: Your new budget is your parametric PDF

Parametric Probability Density Function (PDF)

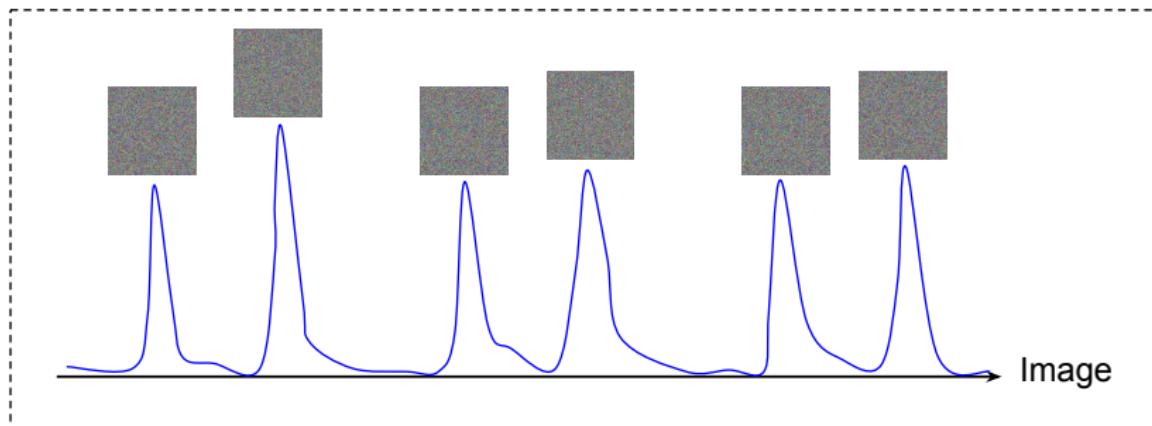
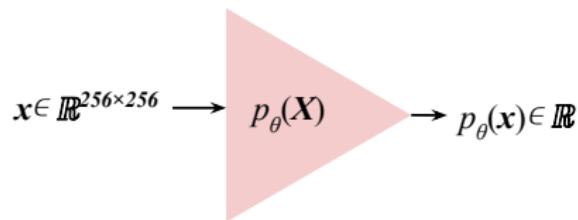


Figure: Your new budget is your parametric PDF

Learning Rooms!

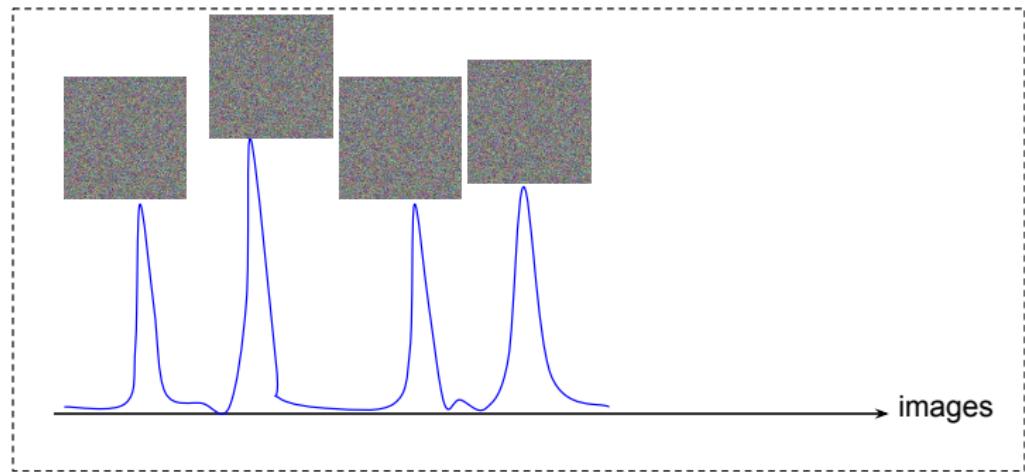
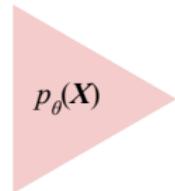


Figure: Learning to represent rooms

Learning Rooms!

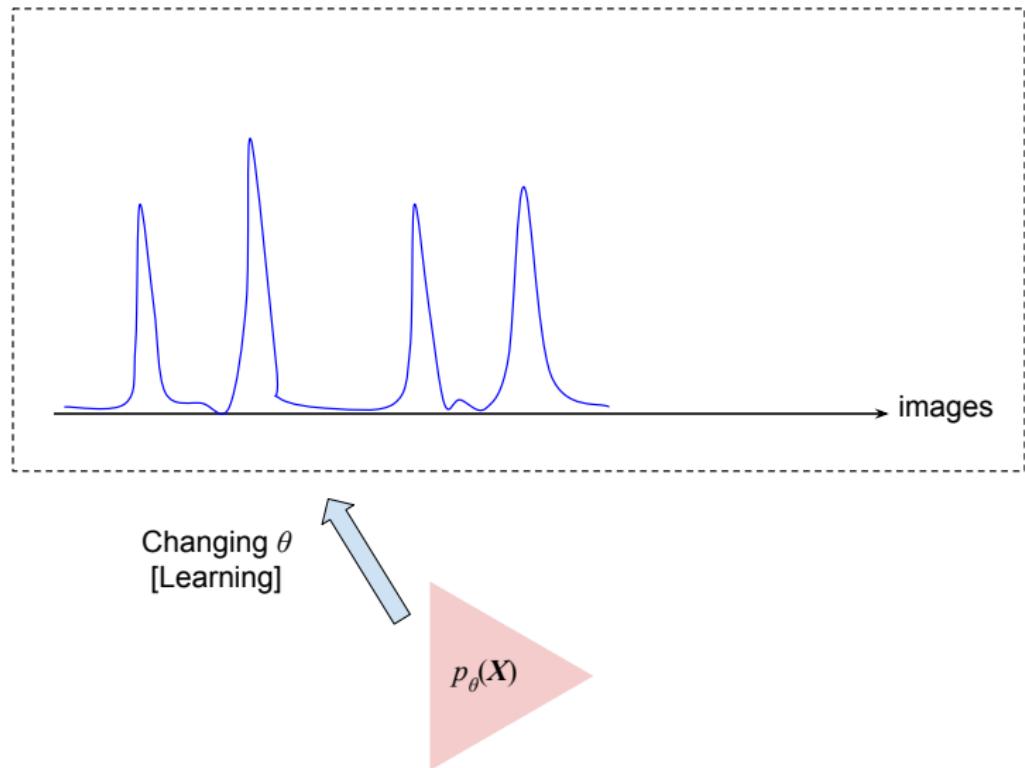


Figure: Learning to represent rooms

Learning Rooms!

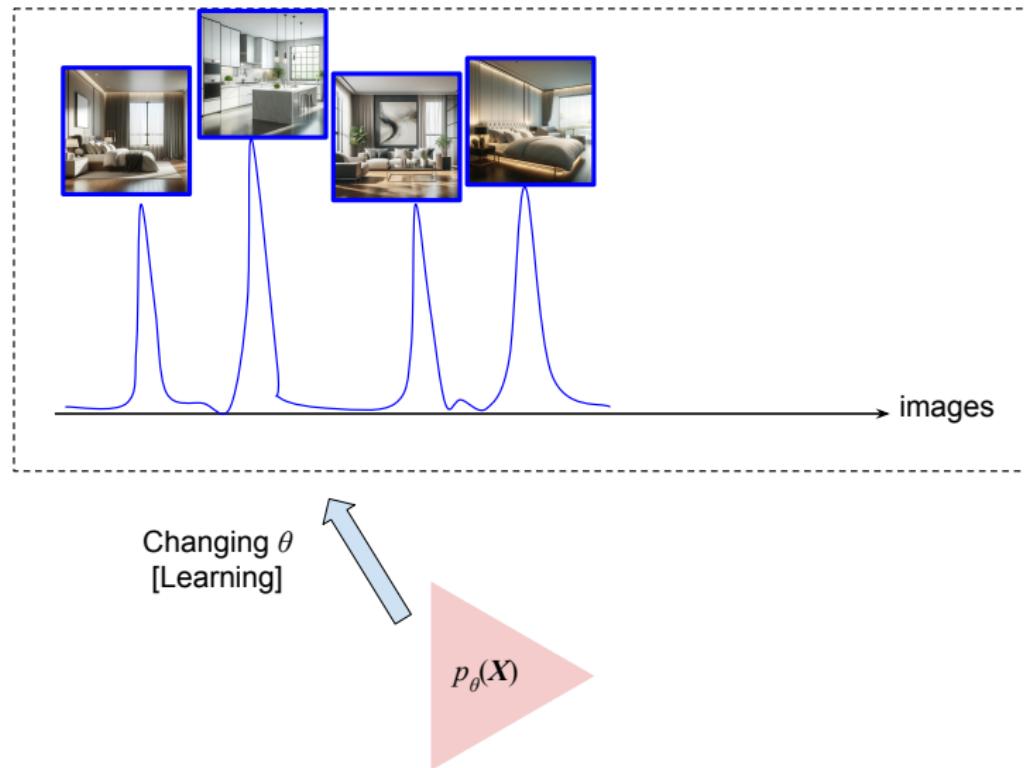


Figure: Learning to represent rooms

Learning Rooms!

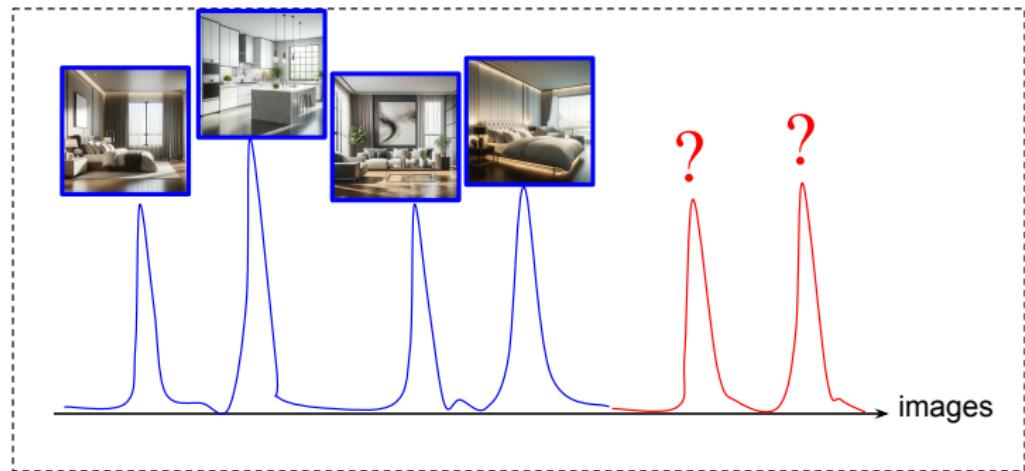
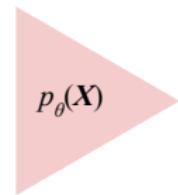


Figure: Learning to represent rooms

Learning Rooms!

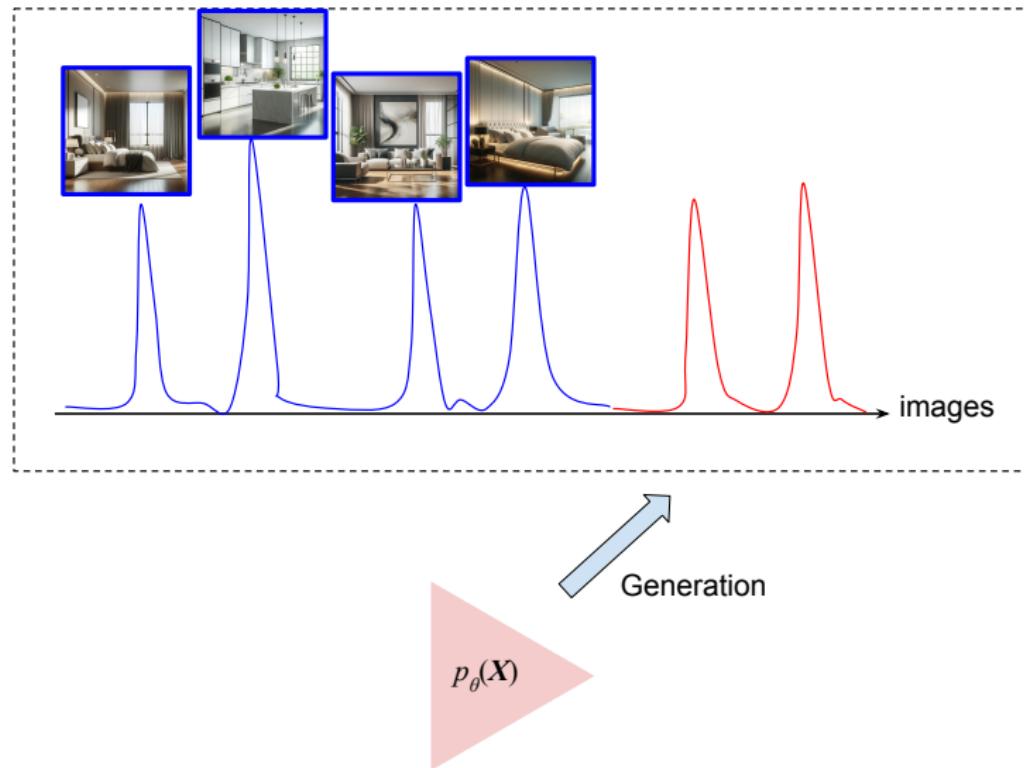


Figure: Learning to represent rooms

Learning Rooms!

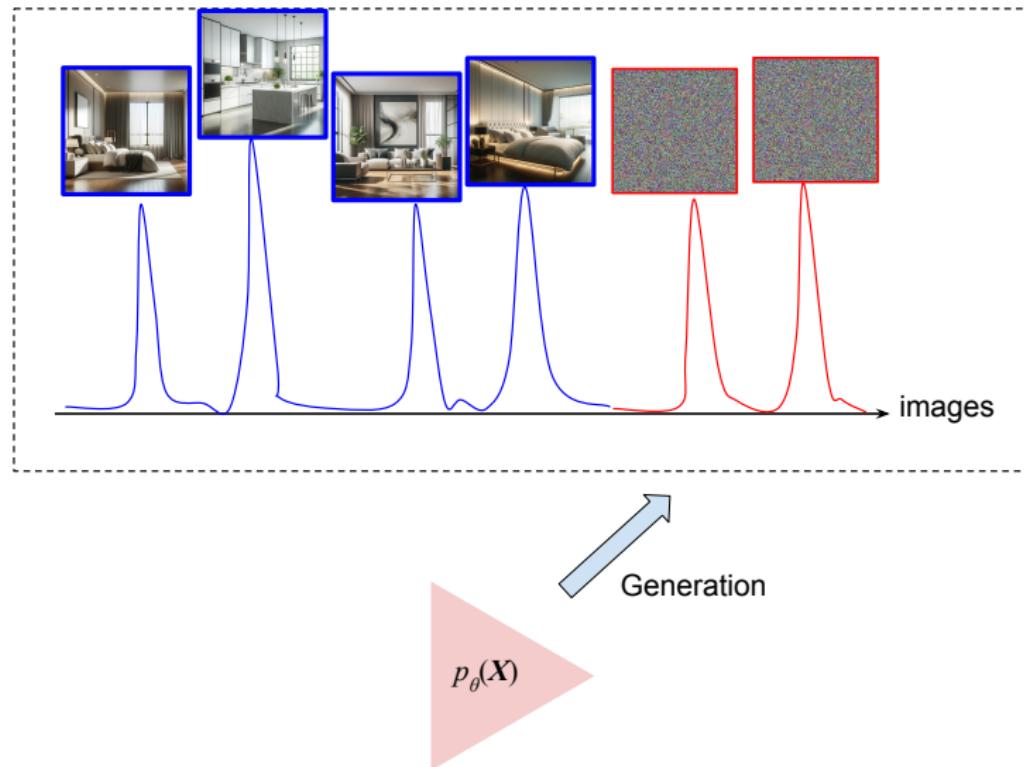


Figure: Learning to represent rooms

Learning Rooms!

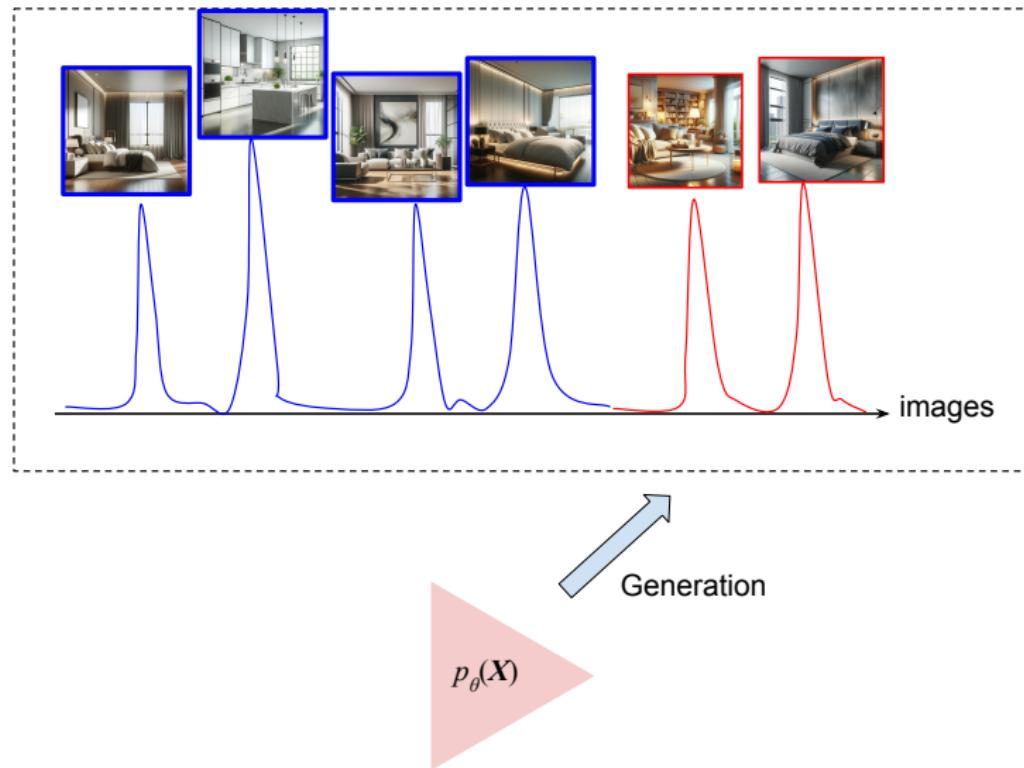


Figure: Learning to represent bedrooms

Section 3

Approaches

Subsection 1

Autoregressive Modeling

Autoregressive Modeling

"You can generate data if you can predict its future given its past!"

Language Modeling Using Autoregressive Models

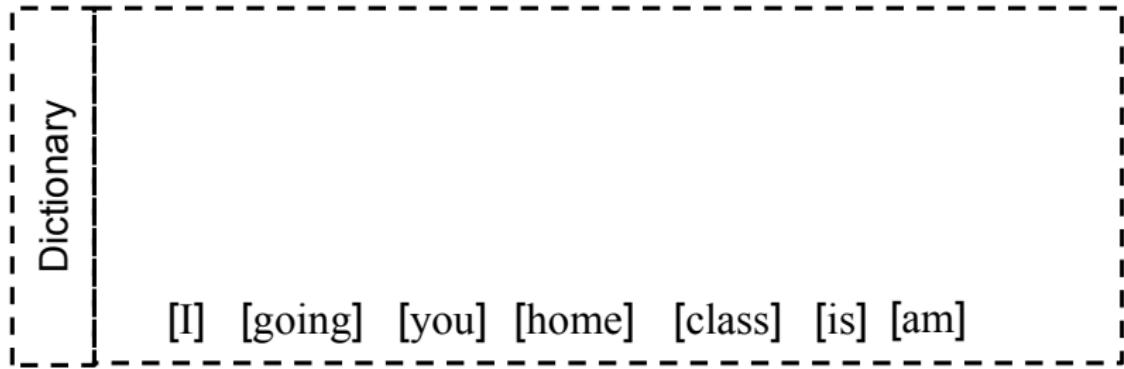


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

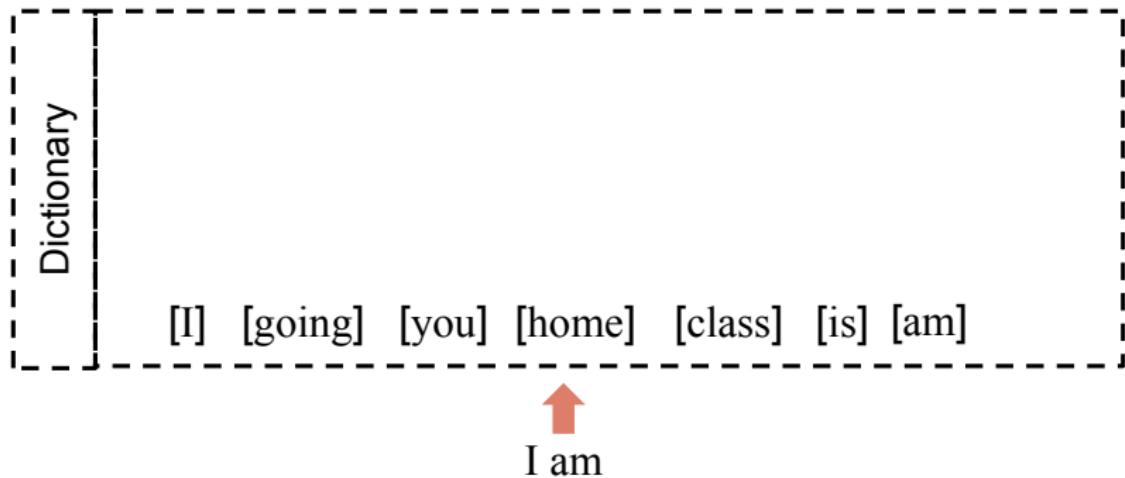


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

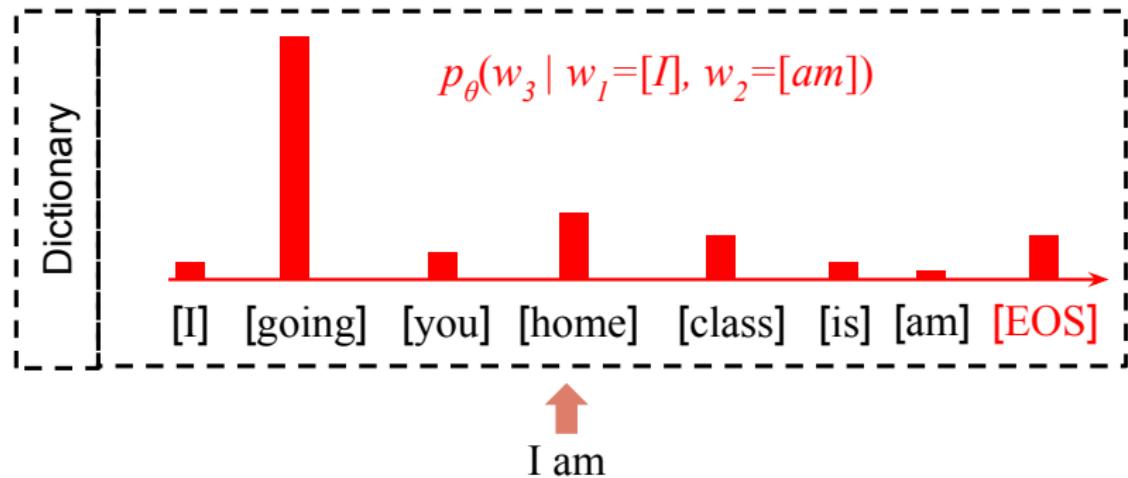


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

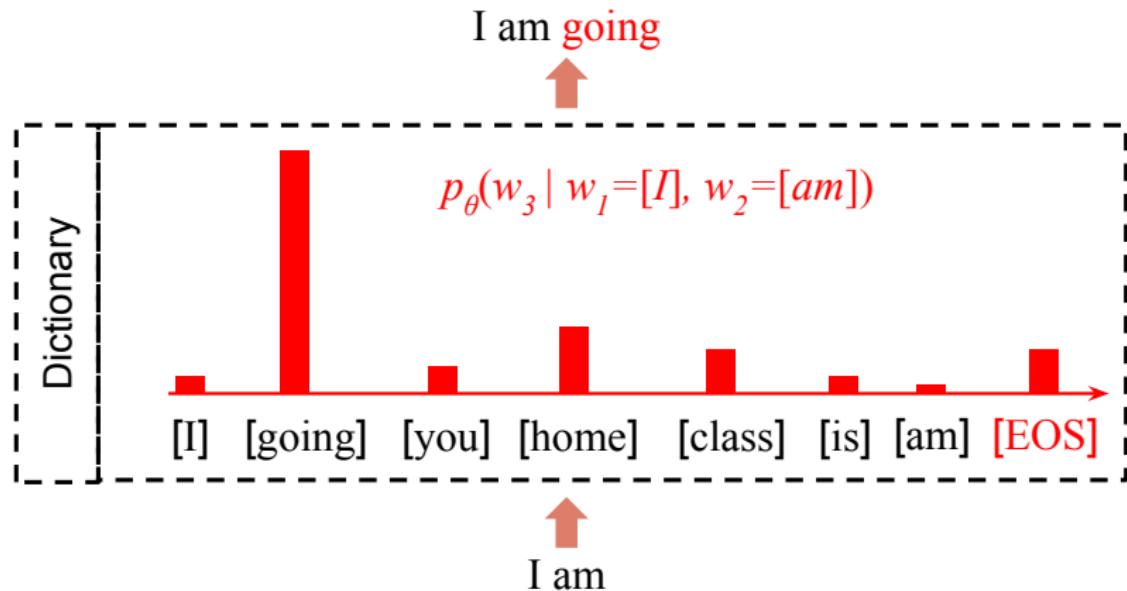


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

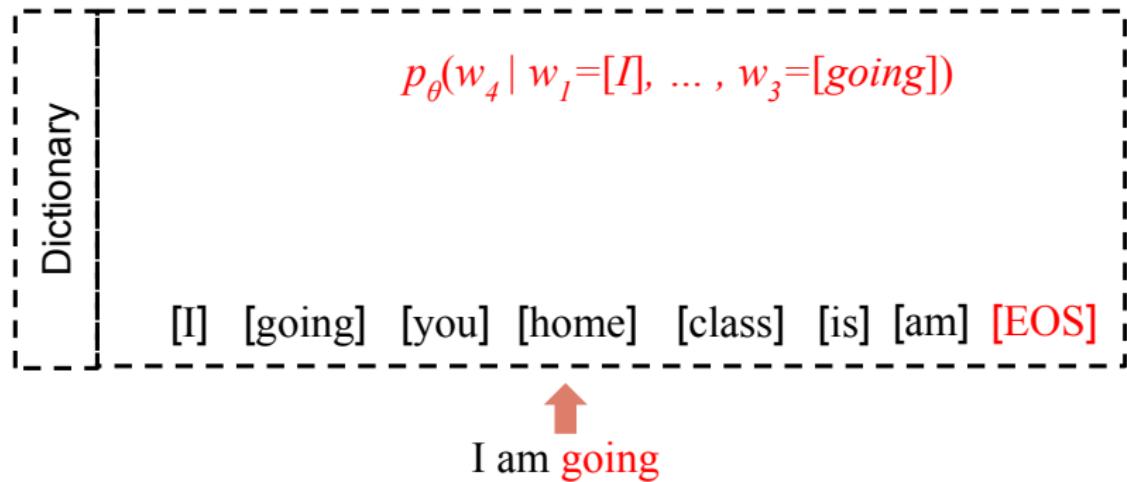


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

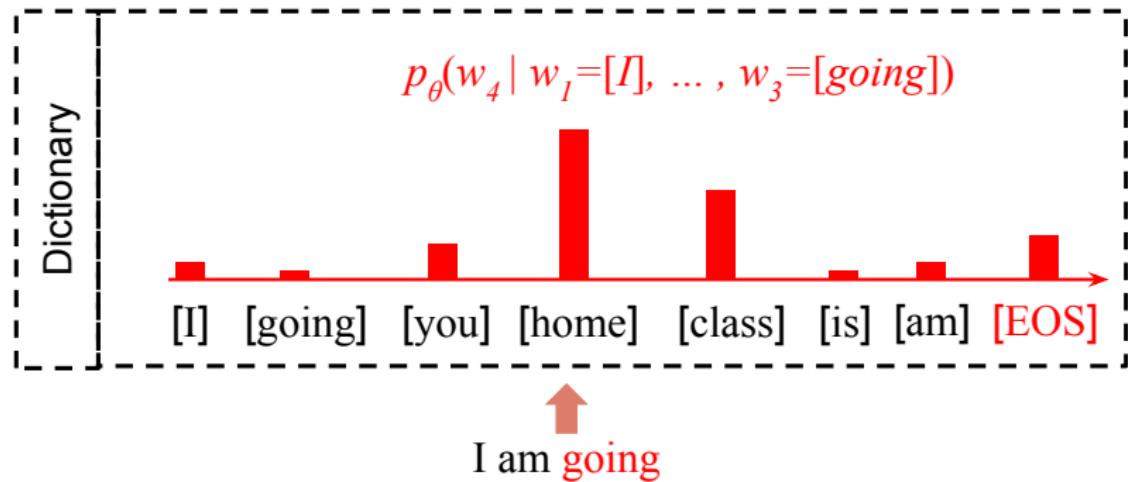


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

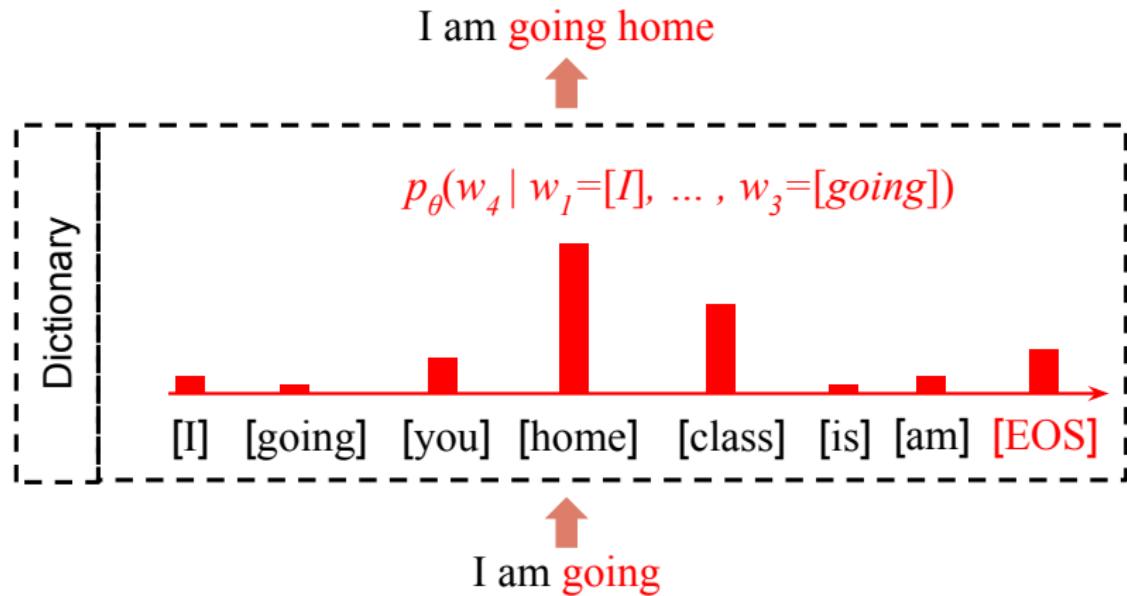


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

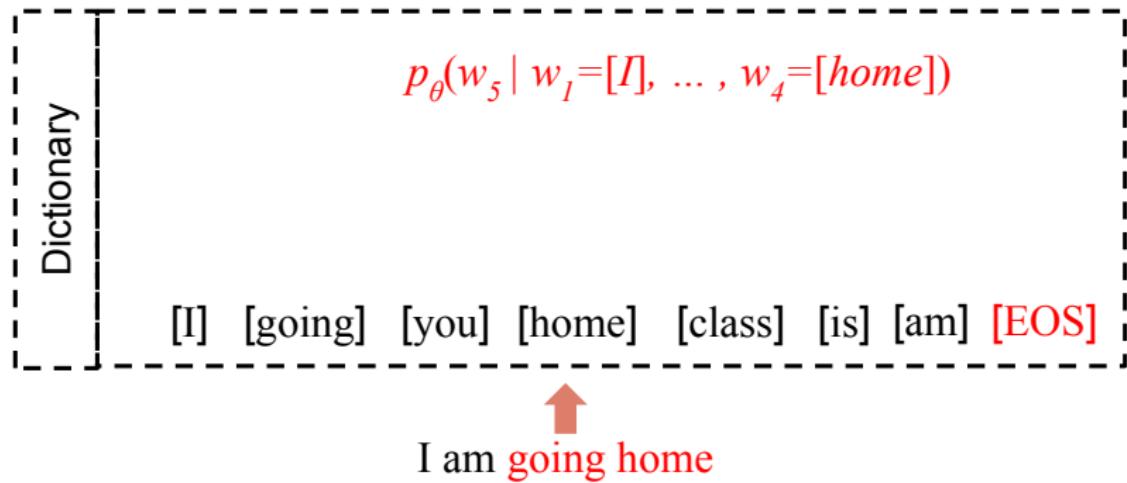


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

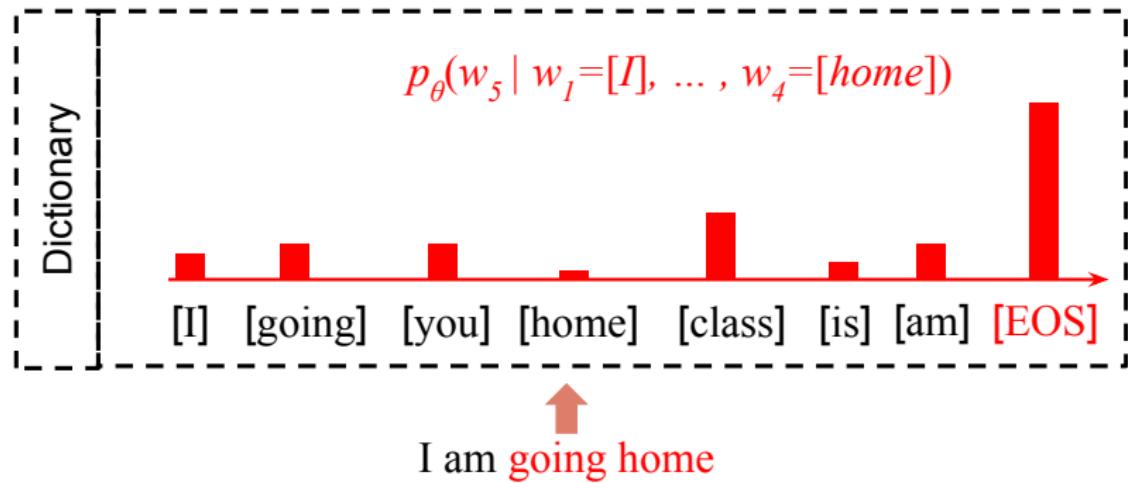


Figure: Generating the remaining part of a sentence

Language Modeling Using Autoregressive Models

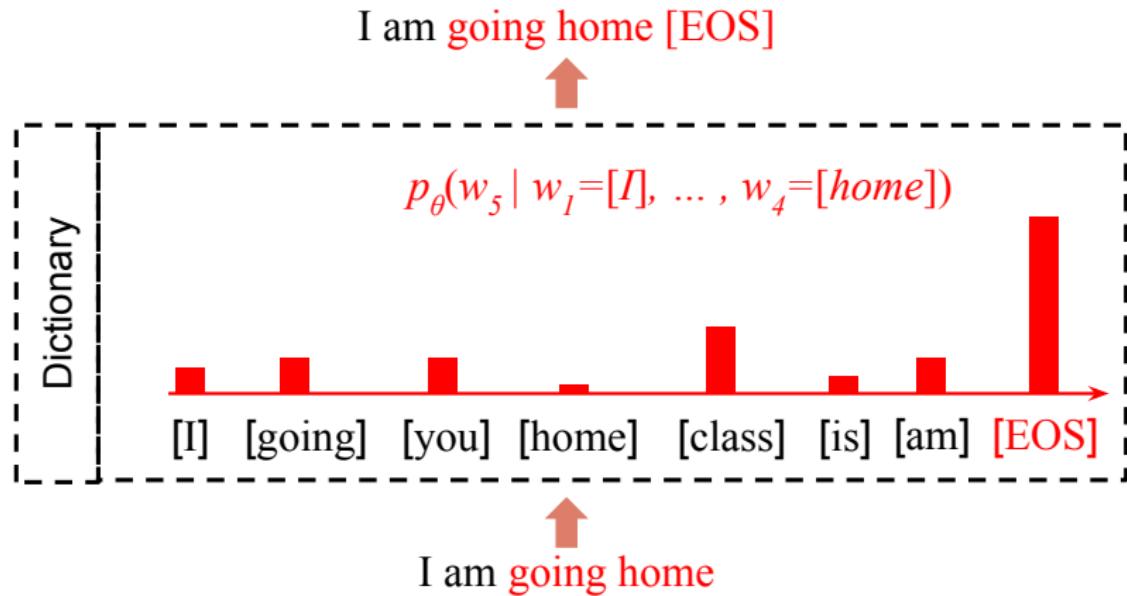


Figure: Generating the remaining part of a sentence

Scaling to ChatGPT

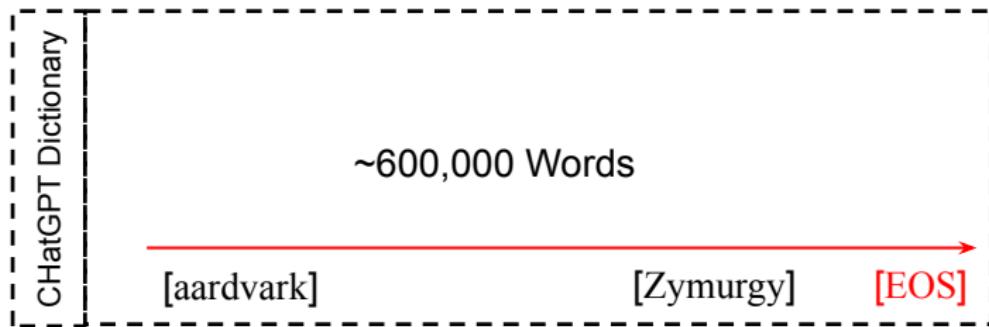


Figure: ChatGPT built on top of an Autoregressive model

Scaling to ChatGPT

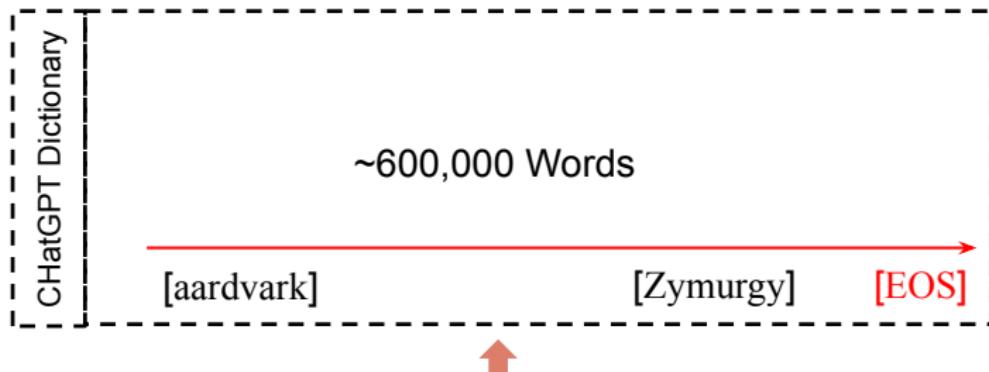
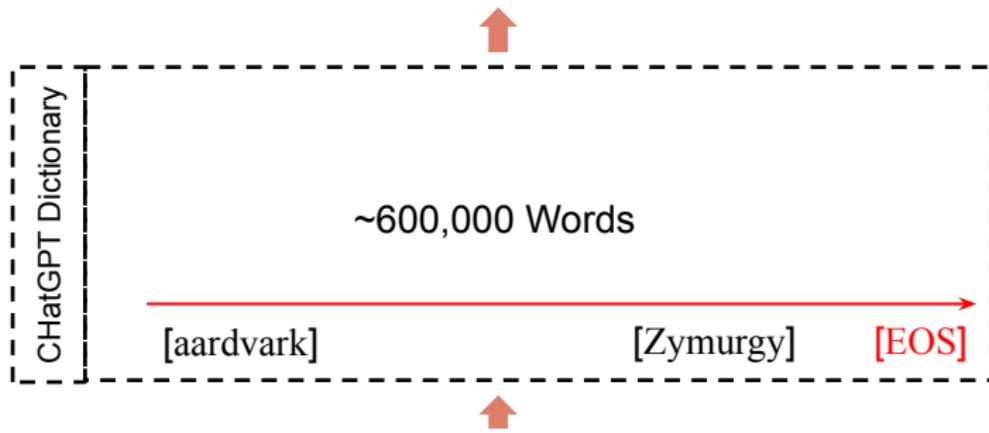


Figure: ChatGPT built on top of an Autoregressive model

Scaling to ChatGPT

George has three brothers and one sister. How many people are in his family, including his mother and father? **George has three brothers and one sister, making a total of five children. Including his mother and father, there are seven people in George's family.**



George has three brothers and one sister. How many people are in his family, including his mother and father?

Figure: ChatGPT built on top of an Autoregressive model

Subsection 2

Variational Autoencoder

Variational Autoencoder

"You can generate data if you can compress it efficiently!"

Variational Autoencoders

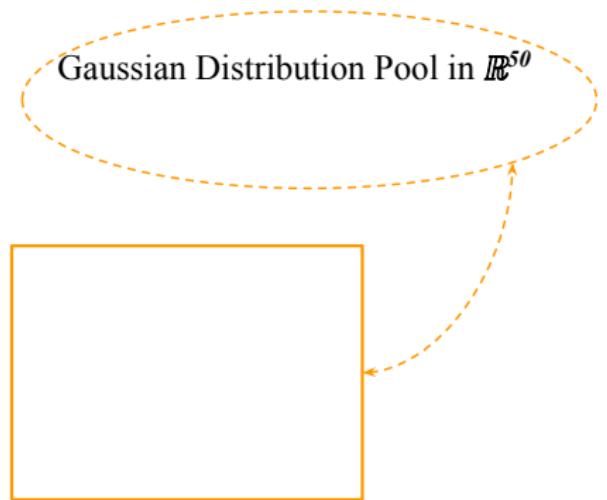


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

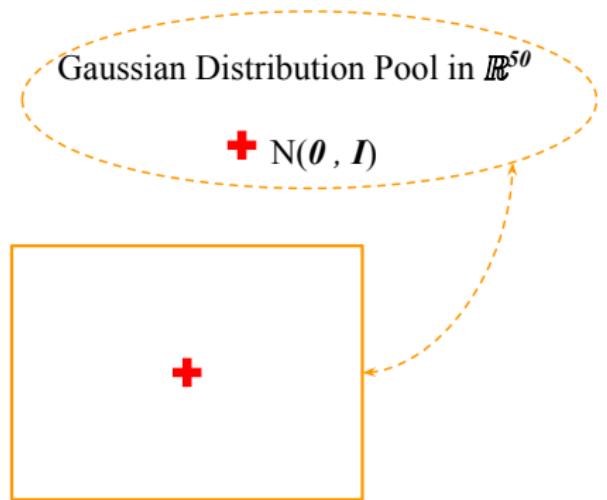


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

$x \in \mathbb{R}^{256 \times 256}$

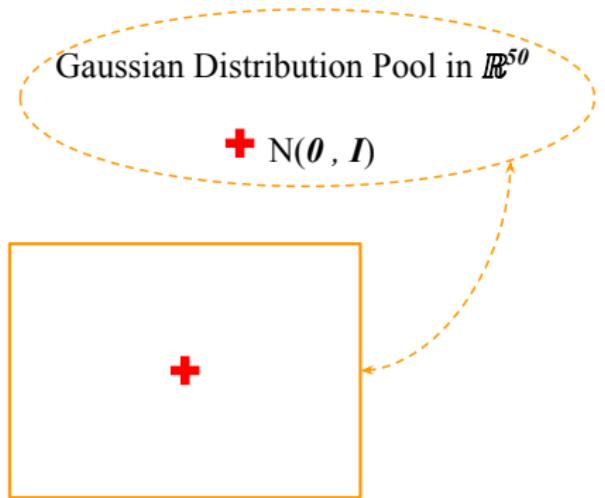


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

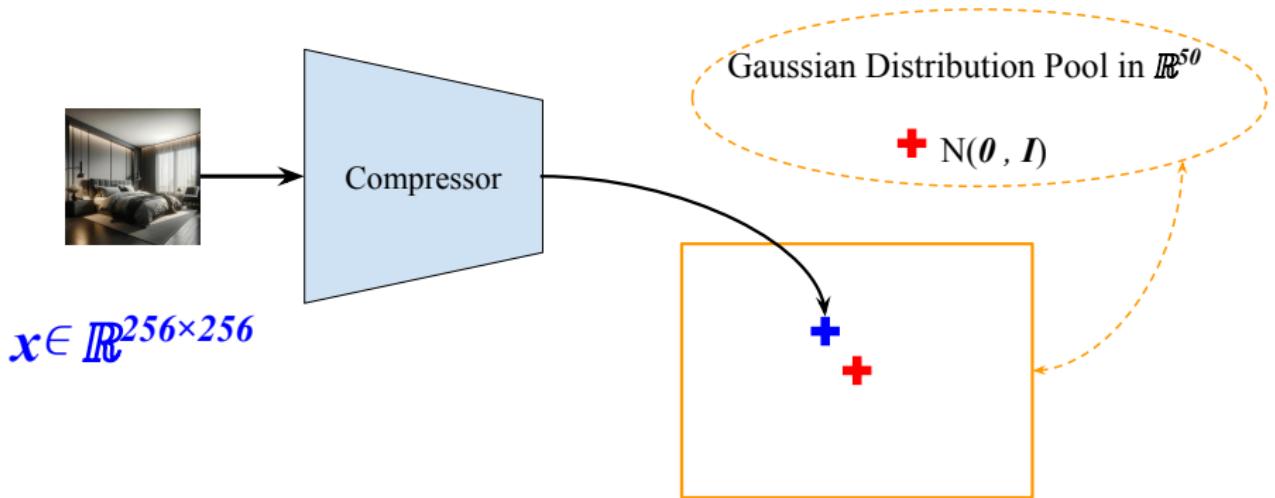


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

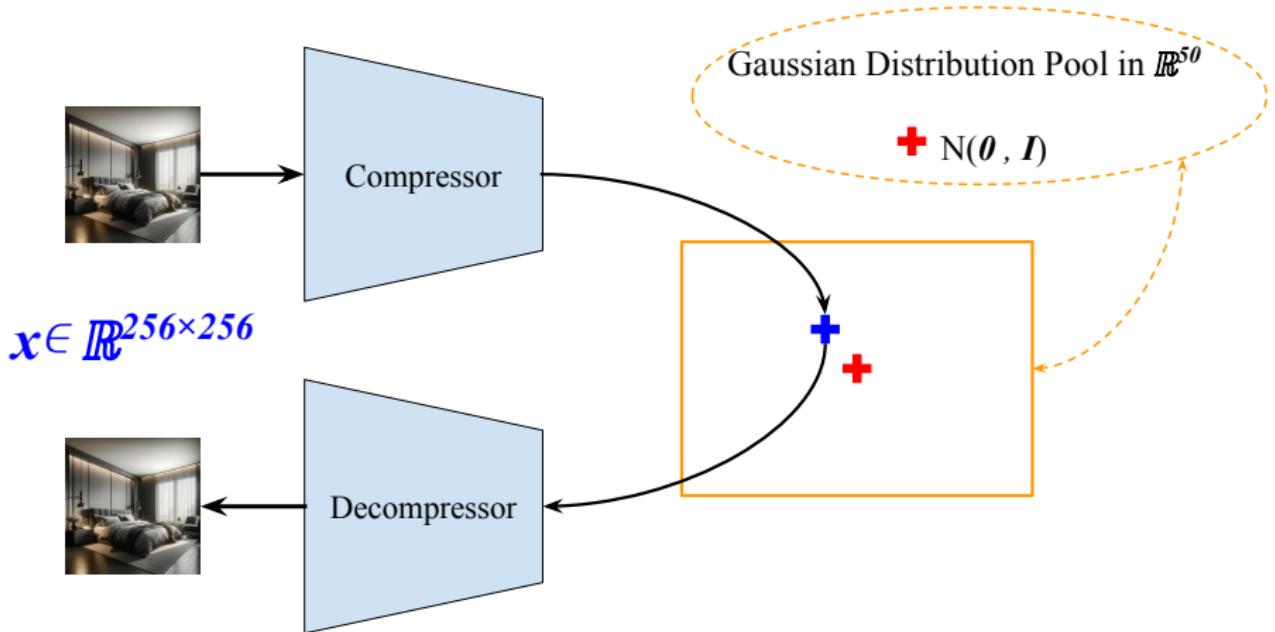


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

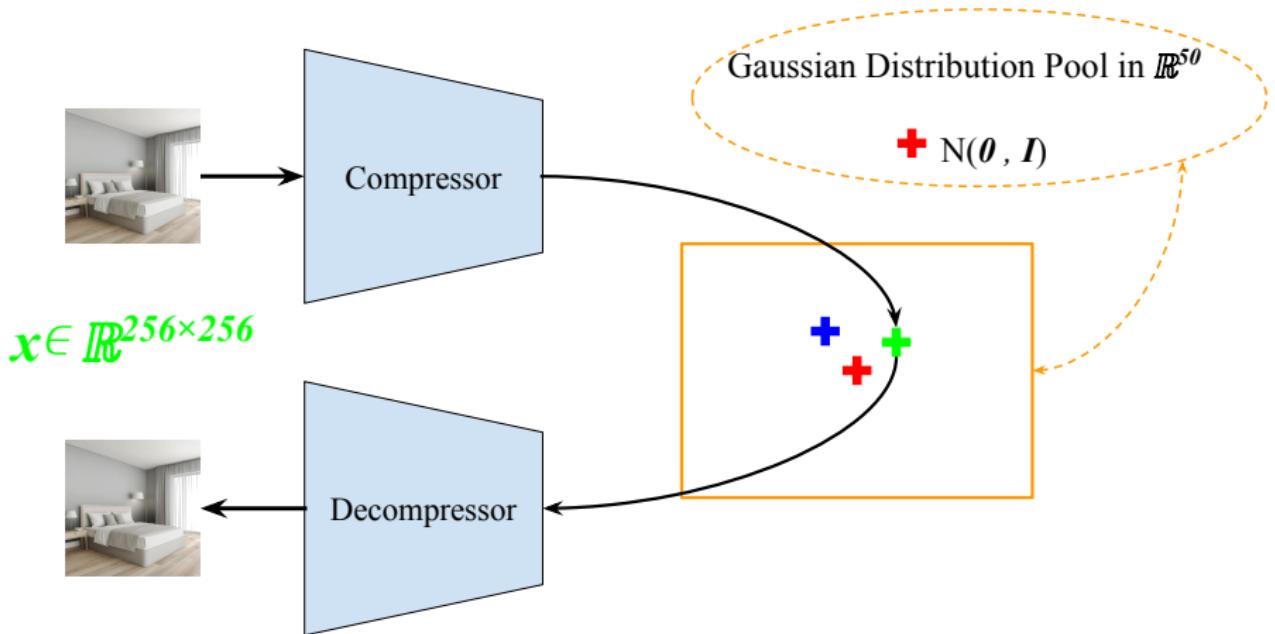


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

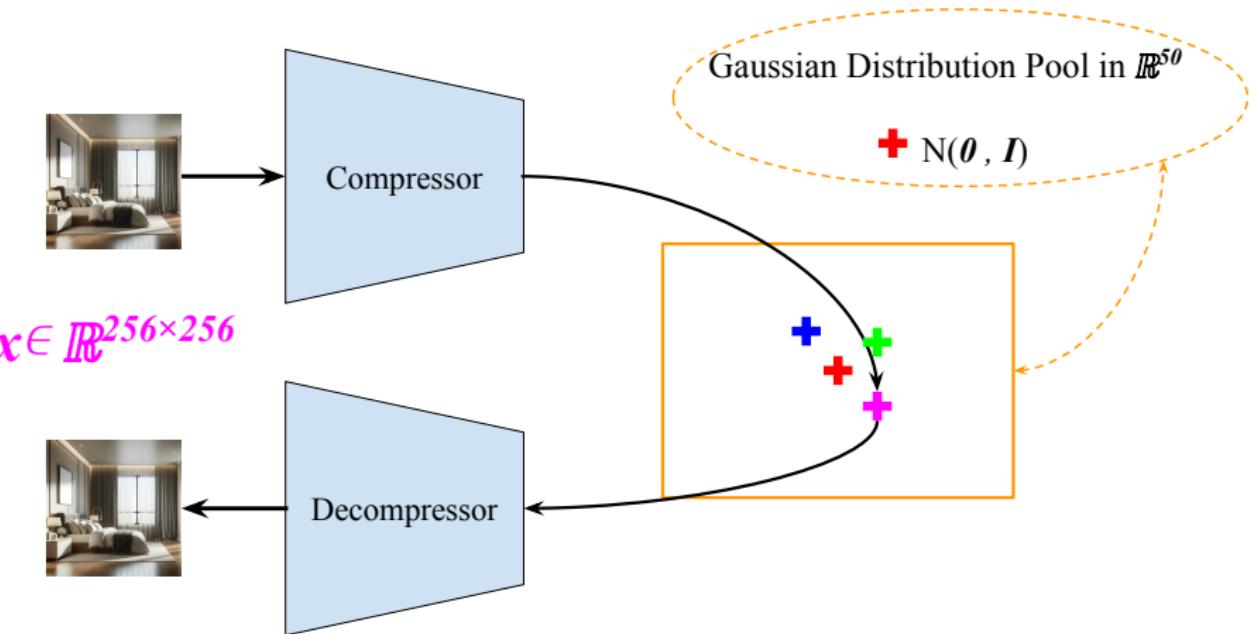


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

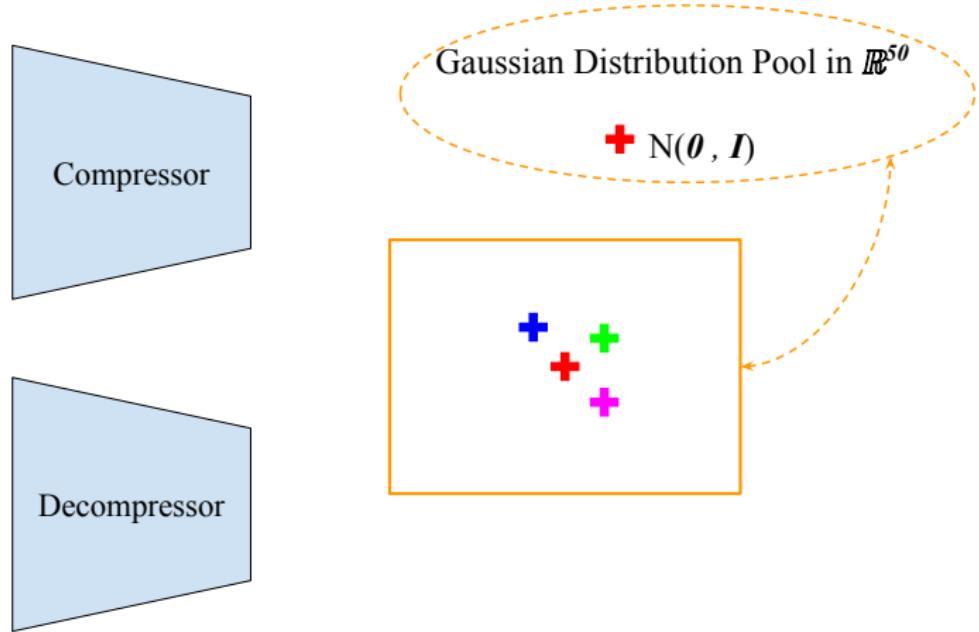


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

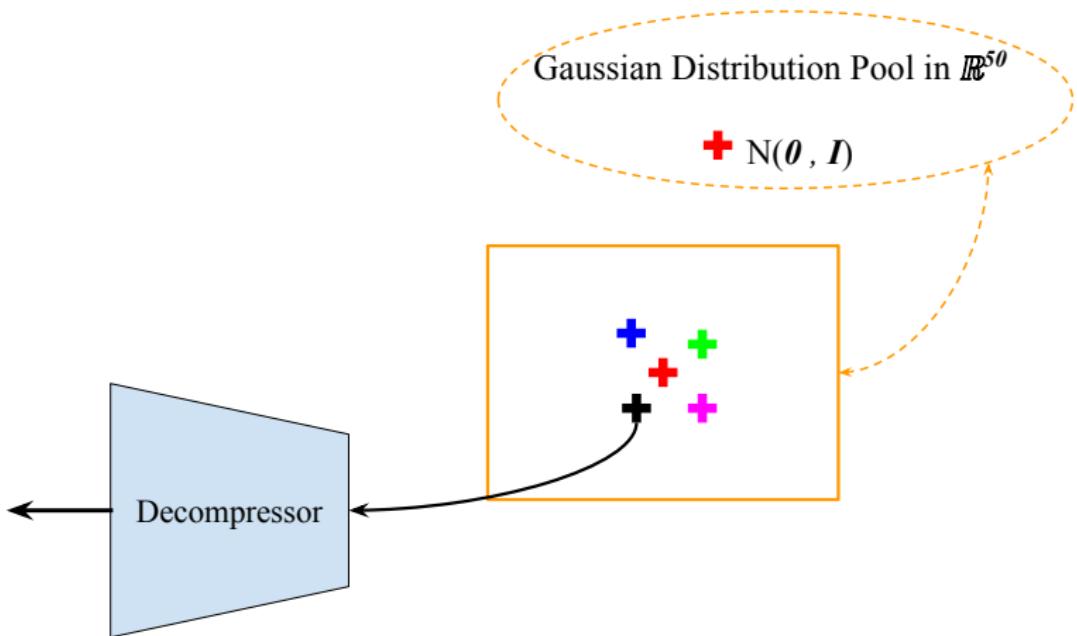


Figure: Compression learning as a method of generative modeling

Variational Autoencoders

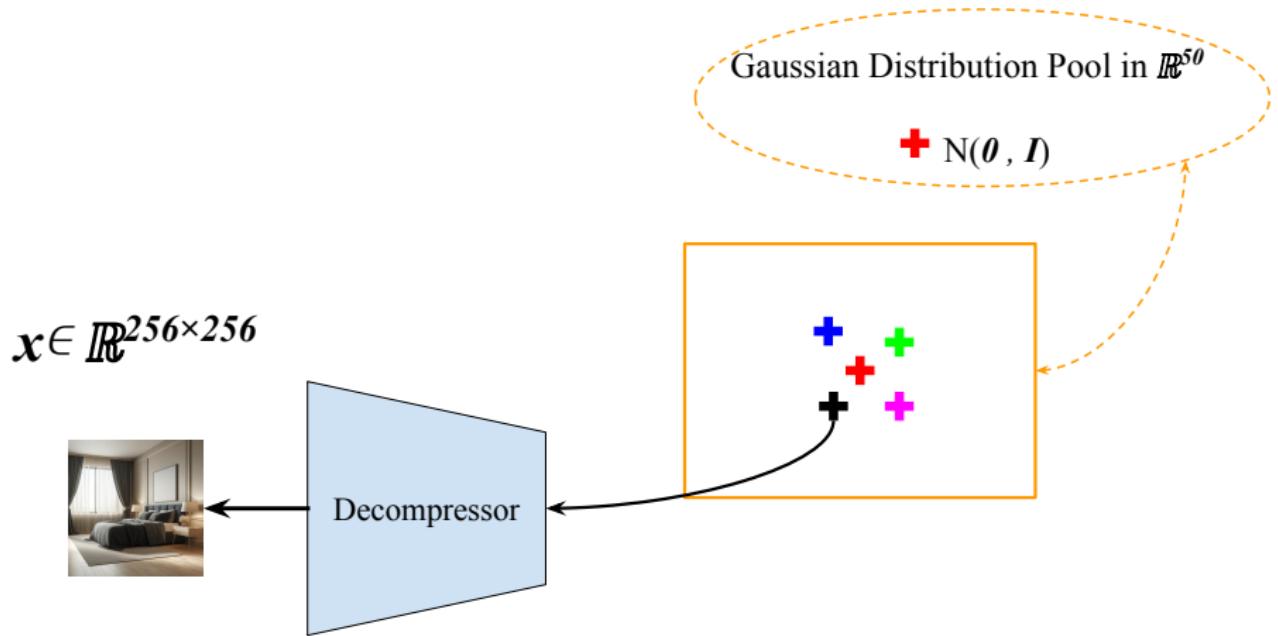


Figure: Compression learning as a method of generative modeling

Subsection 3

Generative Adversarial Nets

Generative Adversarial Nets

"Good generated samples are those that are indistinguishable from the real ones!"

Generative Adversarial Nets

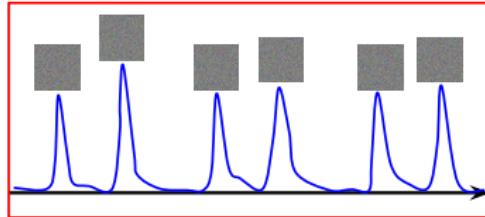


Figure: Using an Inspector [Discriminator] to detect generation

Generative Adversarial Nets

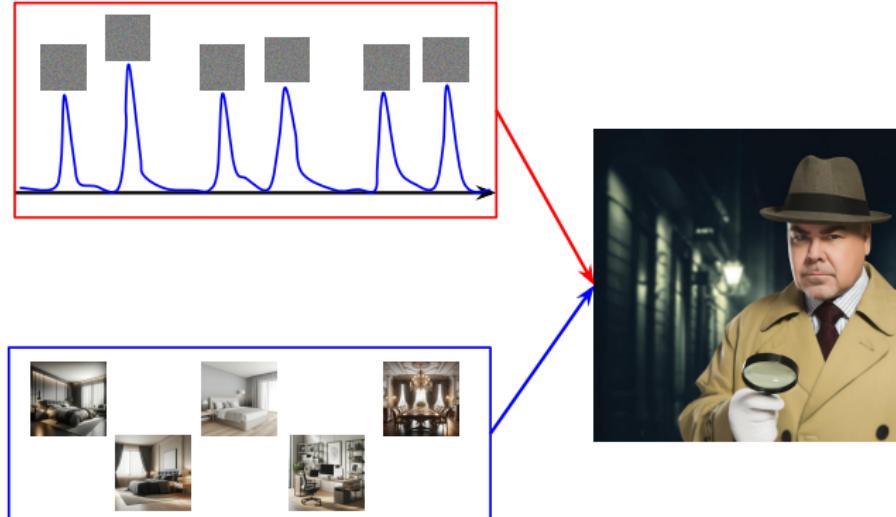


Figure: Using an Inspector [Discriminator] to detect generation

Generative Adversarial Nets

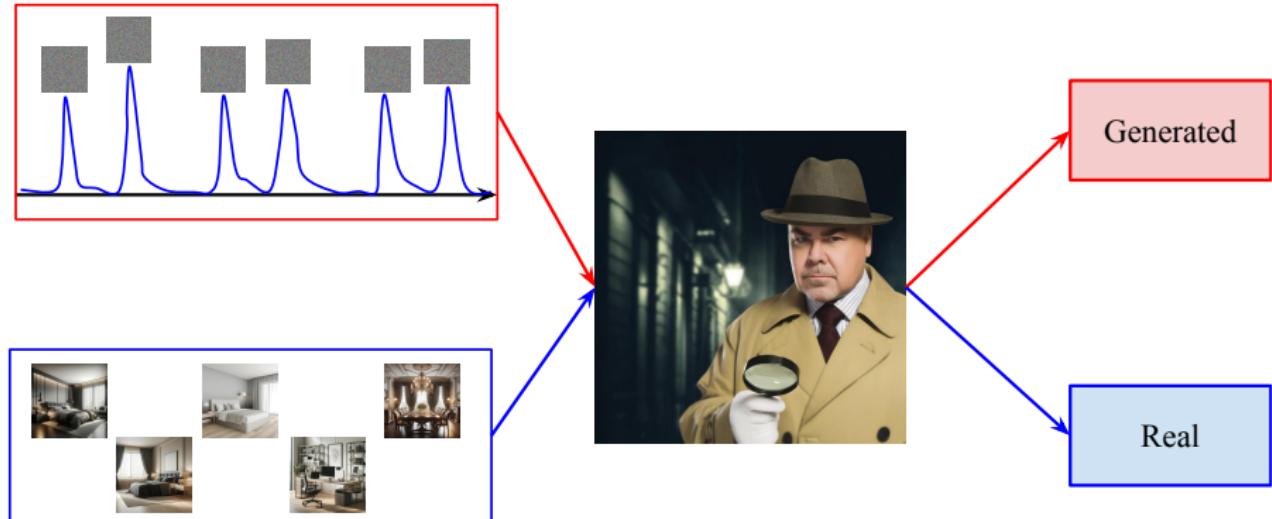


Figure: Using an Inspector [Discriminator] to detect generation

Generative Adversarial Nets

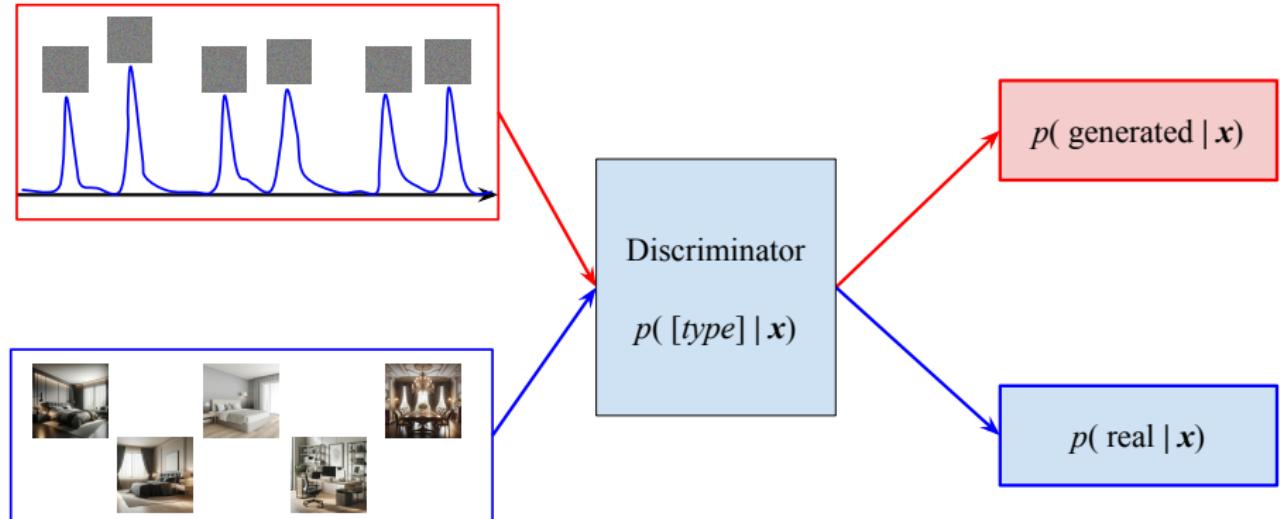


Figure: Using an Inspector [Discriminator] to detect generation

Generative Adversarial Nets

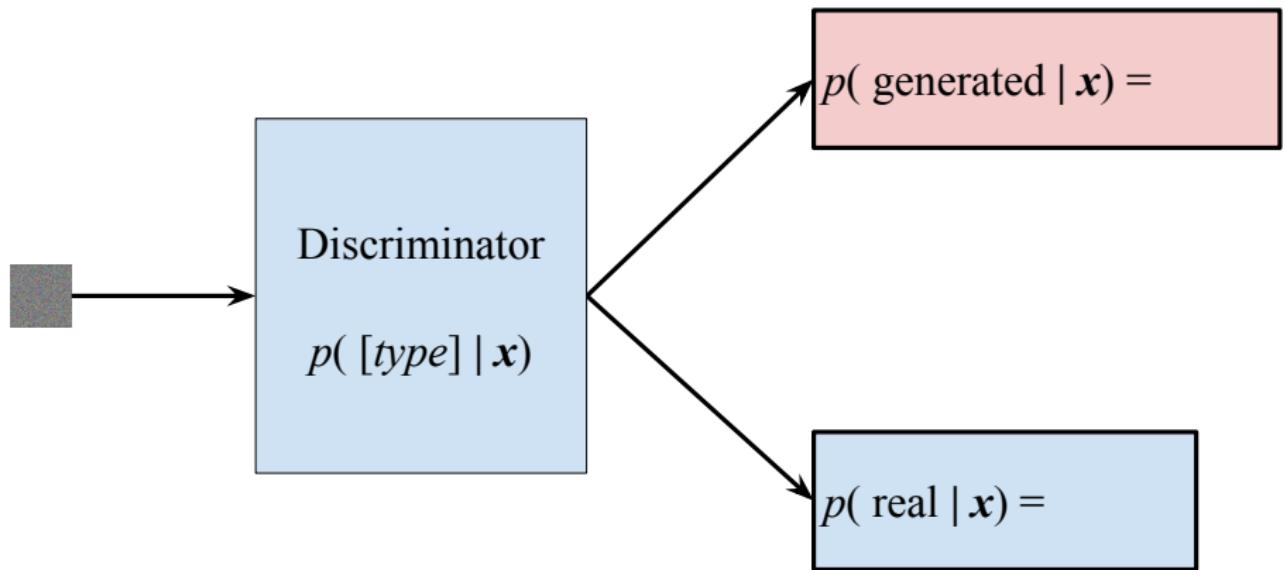


Figure: Examining the Discriminator

Generative Adversarial Nets

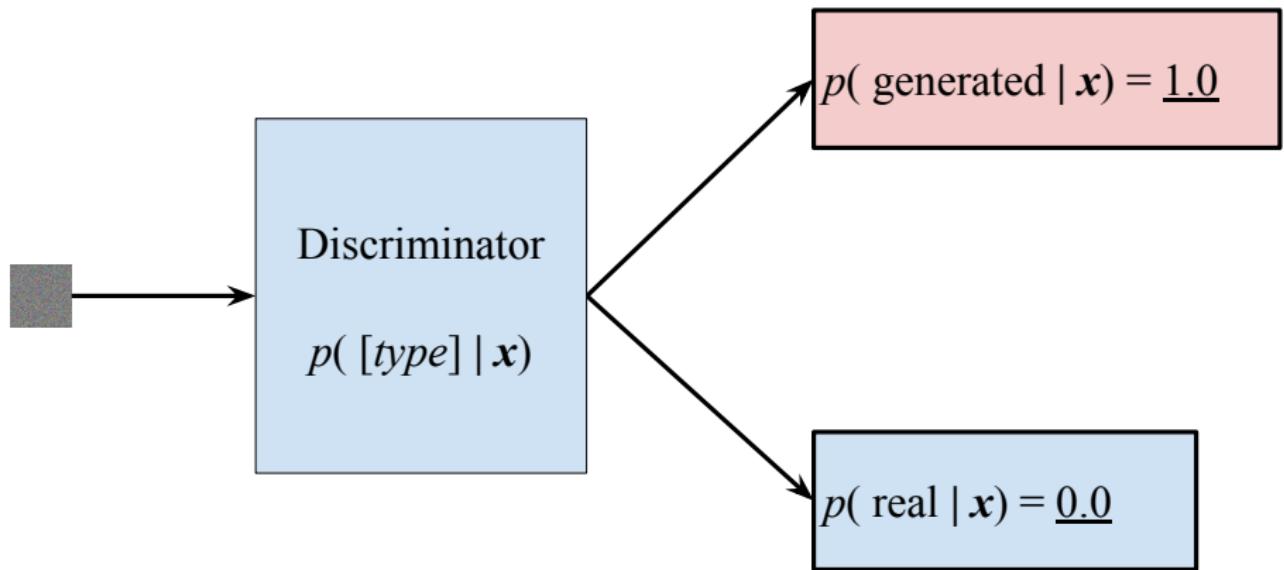


Figure: Examining the Discriminator

Generative Adversarial Nets

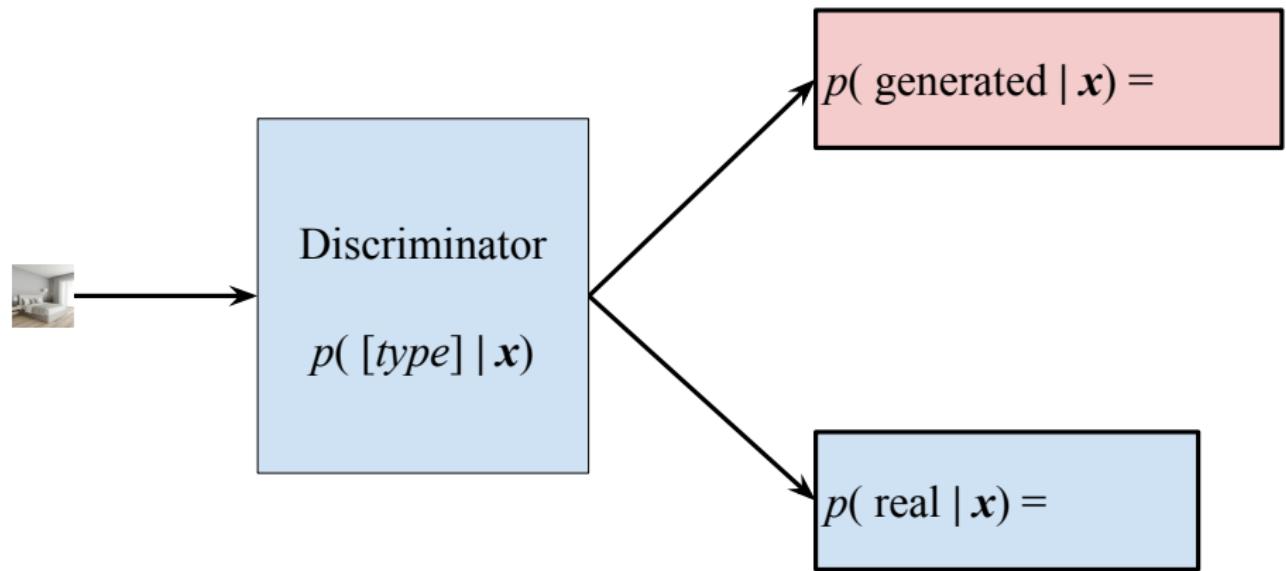


Figure: Examining the Discriminator

Generative Adversarial Nets

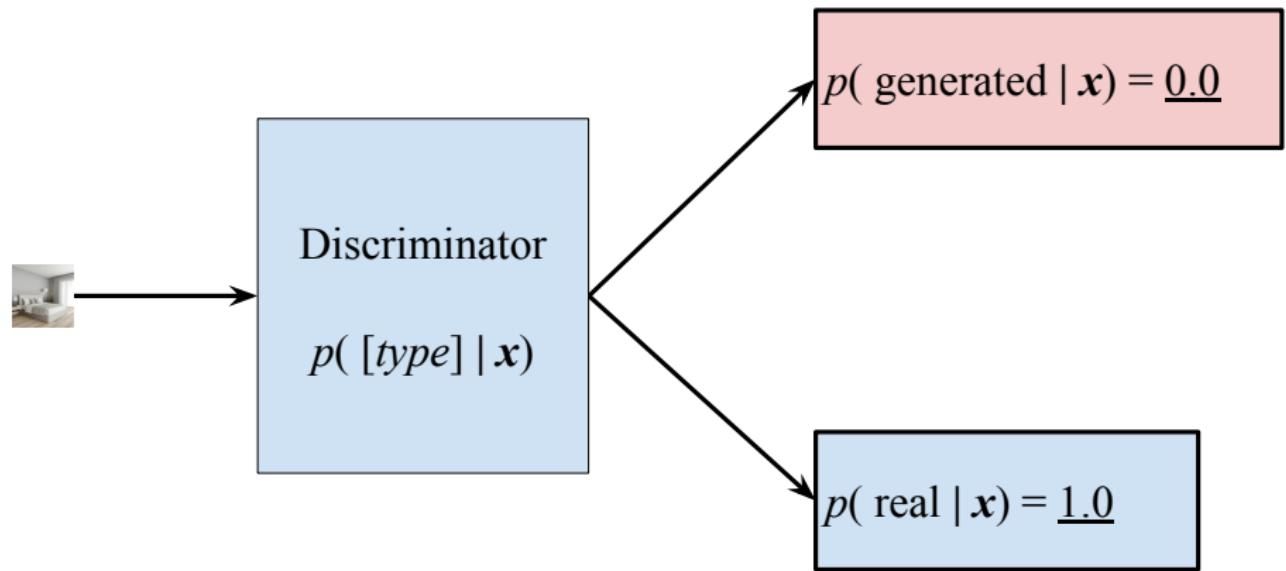


Figure: Examining the Discriminator

Generative Adversarial Nets

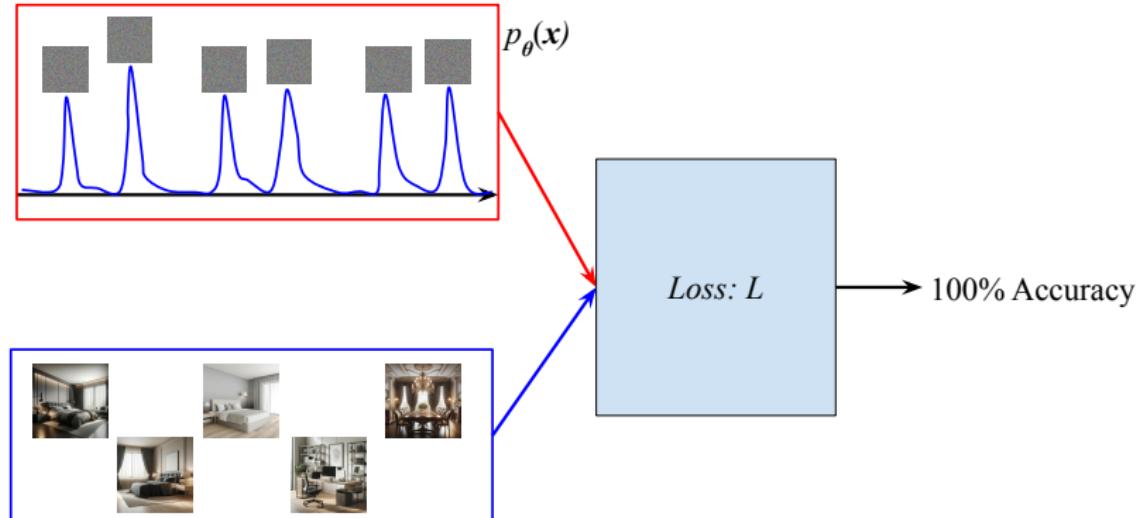


Figure: Updating generation

Generative Adversarial Nets

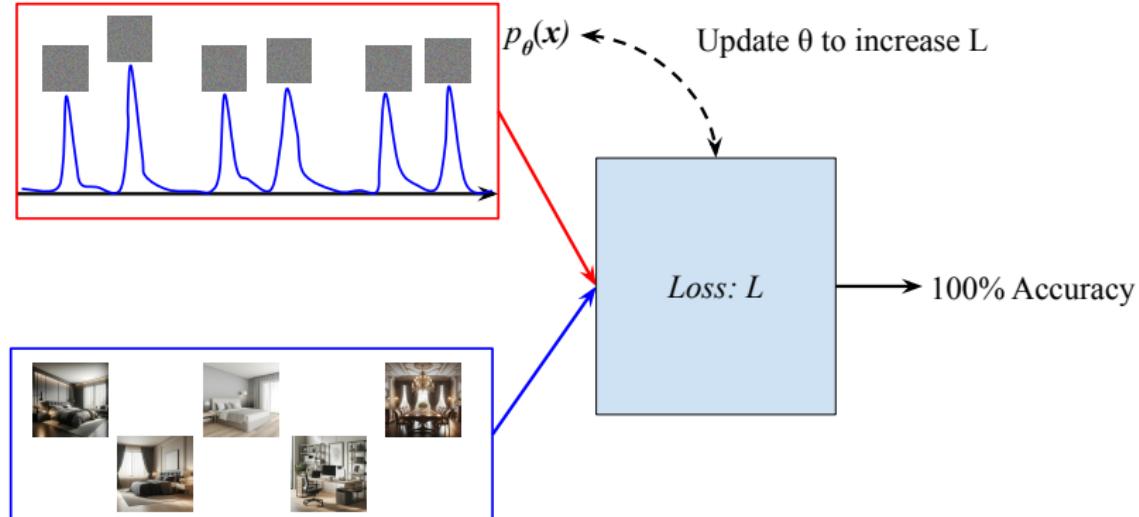


Figure: Updating generation

Generative Adversarial Nets

Figure: Updating generation

Subsection 4

Diffusion Models

Diffusion Models

"You can generate data if you can denoise it"

Diffusion Models Denoiser

σ

Figure: Denoiser module

Diffusion Models Denoiser

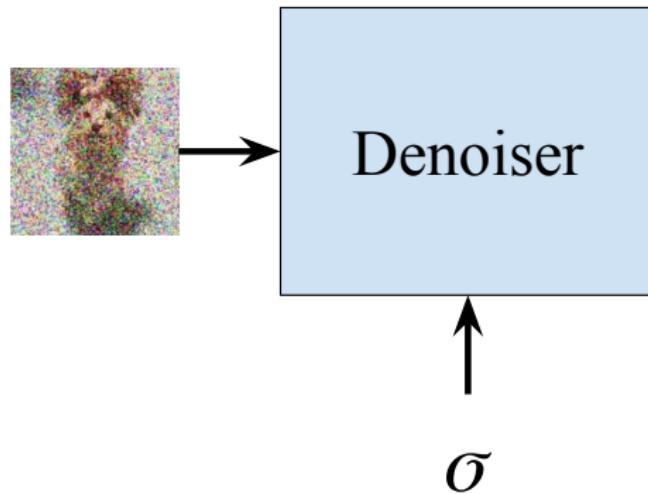


Figure: Denoiser module

Diffusion Models Denoiser

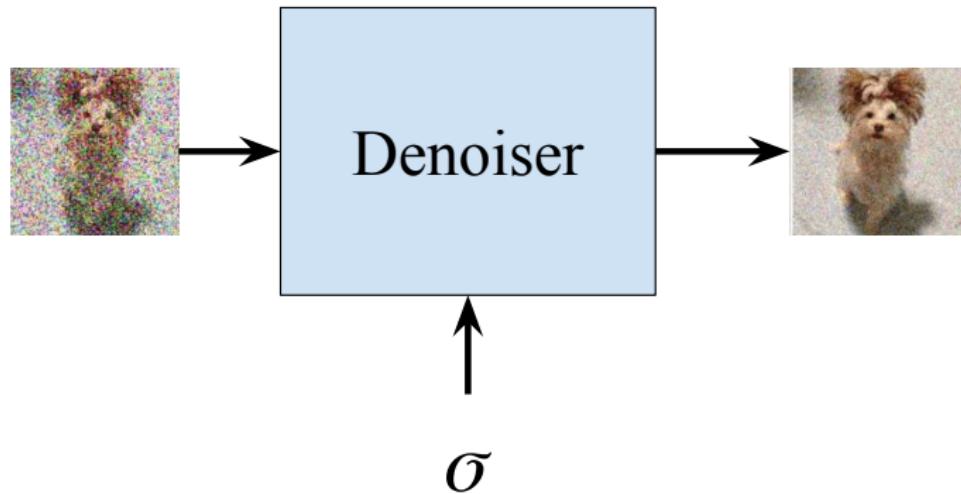


Figure: Denoiser module

Diffusion Models Generation

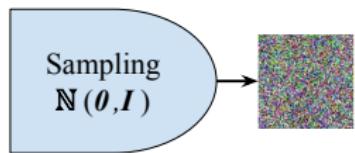


Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation

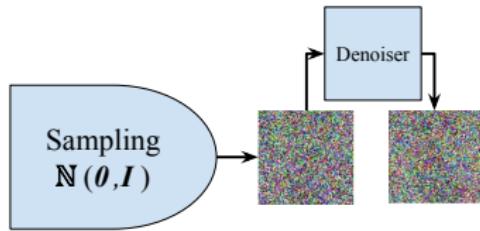


Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation

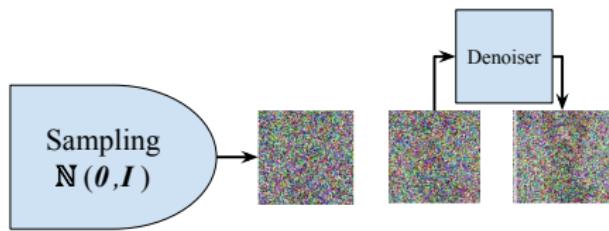


Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation

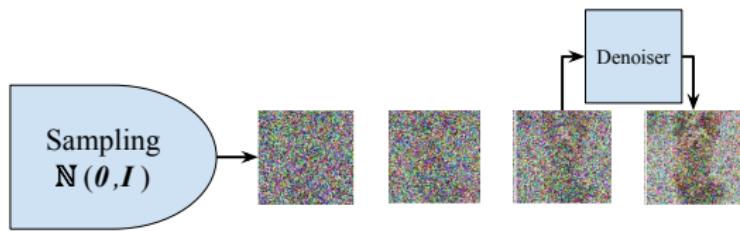


Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation

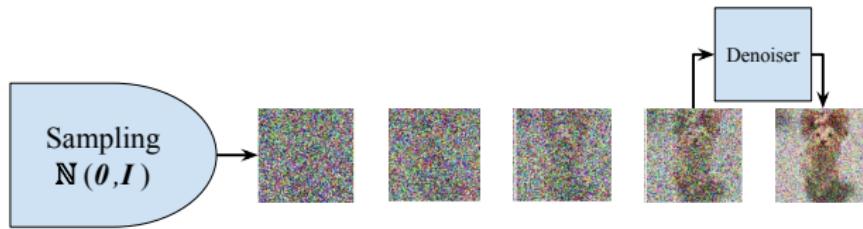


Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation

Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation



Figure: Generation using diffusion model (images source: [1])

Diffusion Models Generation

Figure: Generation using diffusion model (images source: [1])

Section 4

Extention to Conditional Generation

Learning Conditional Distributions

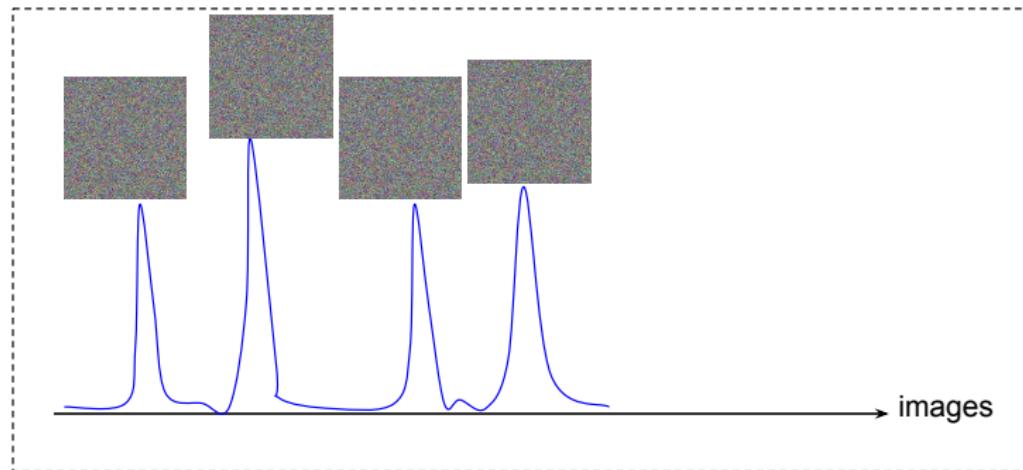
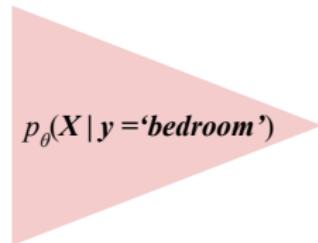


Figure: Learning to represent bedrooms

Learning Conditional Distributions

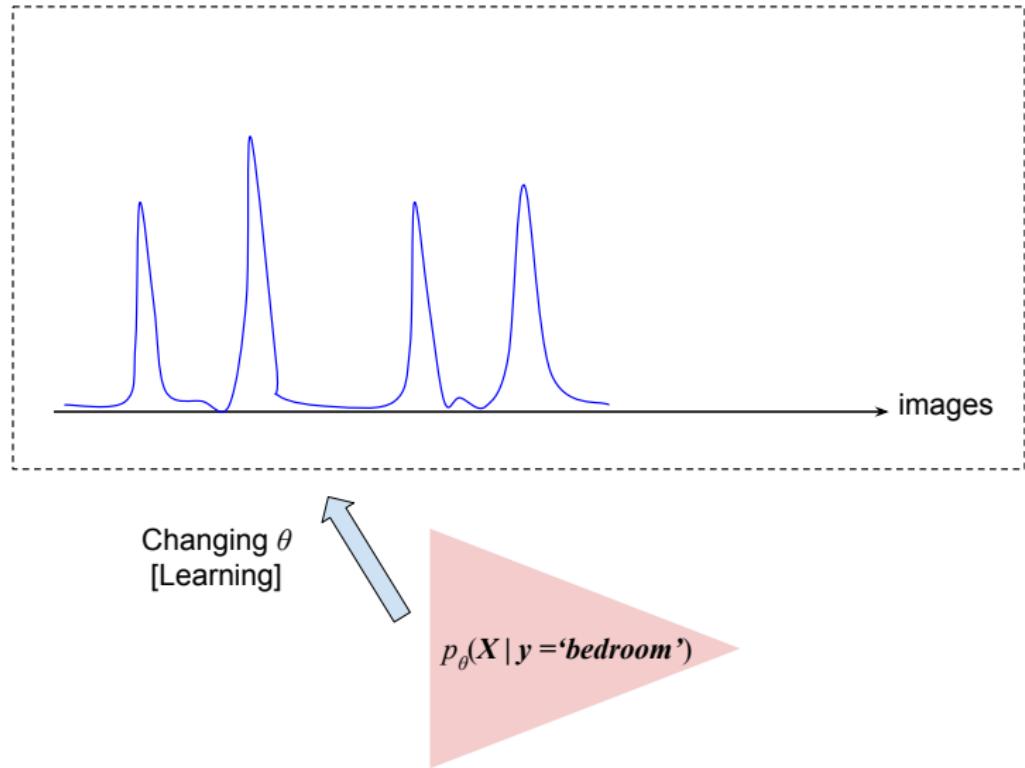


Figure: Learning to represent bedrooms

Learning Conditional Distributions

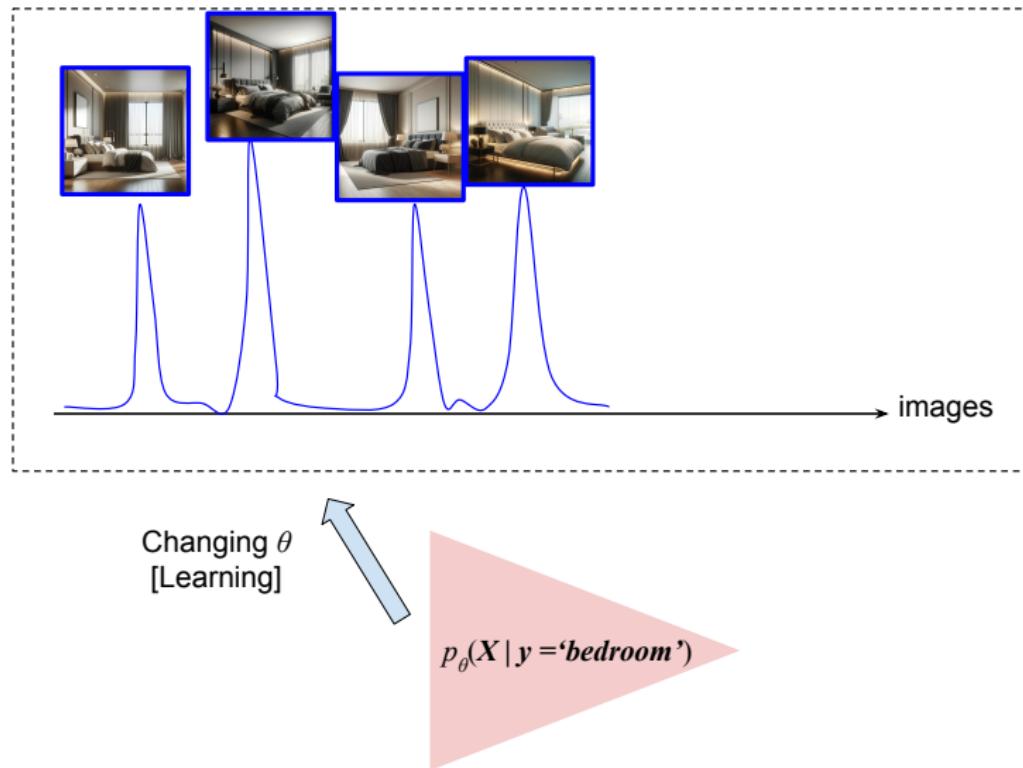
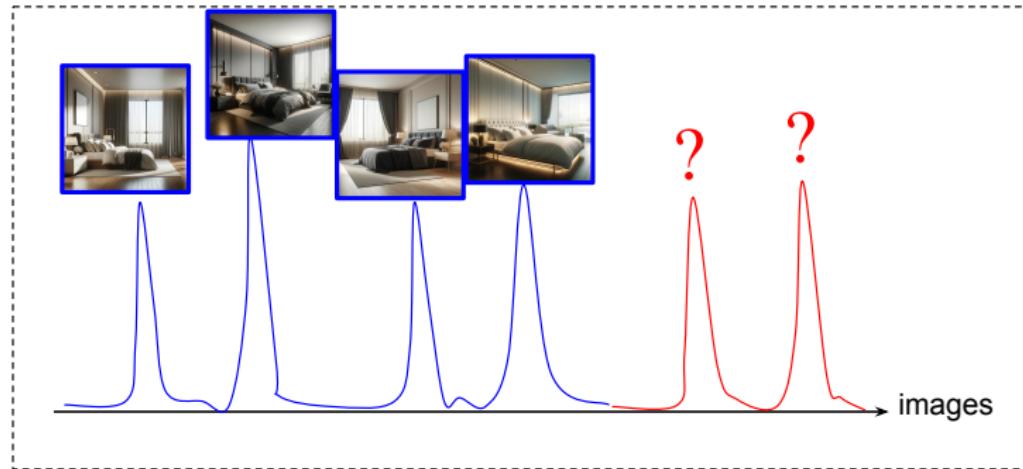


Figure: Learning to represent bedrooms

Learning Conditional Distributions



$$p_{\theta}(X | y = \text{'bedroom'})$$

Figure: Learning to represent bedrooms

Learning Conditional Distributions

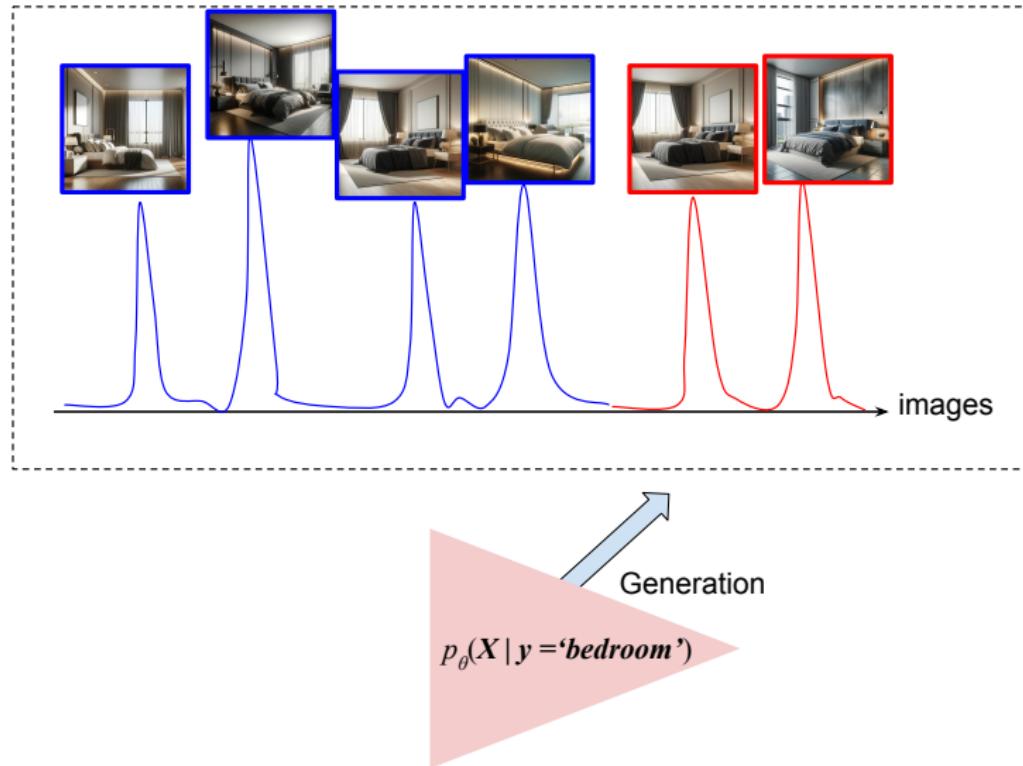


Figure: Learning to represent bedrooms

Learning Conditional Distributions

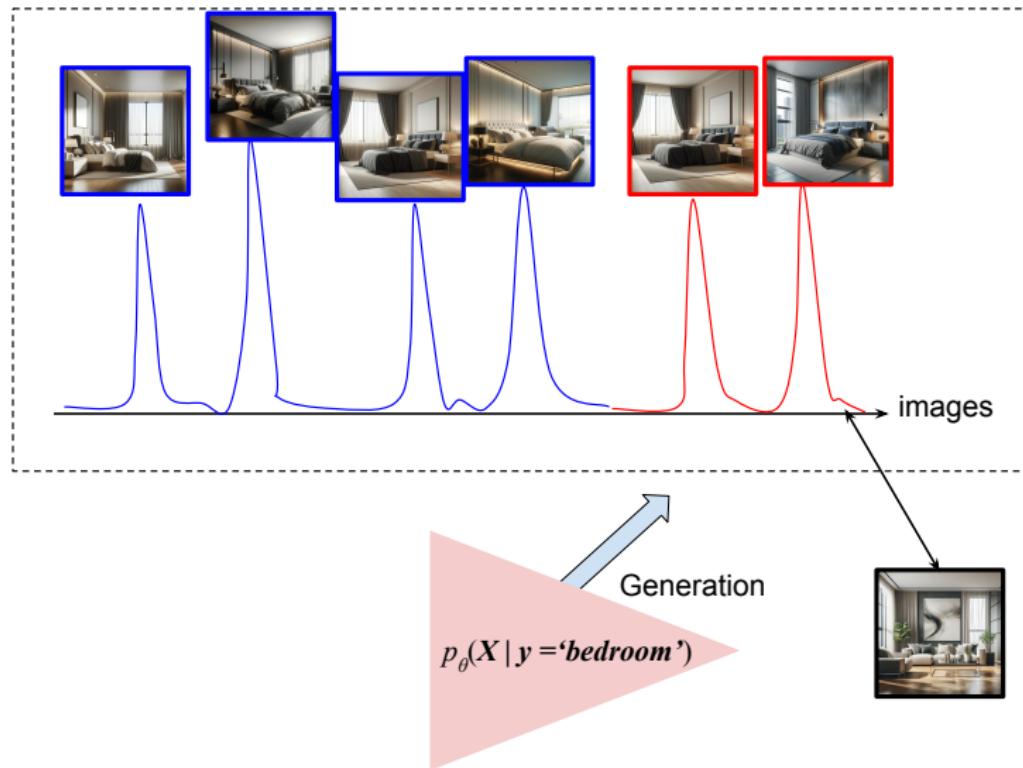


Figure: Learning to represent bedrooms

Section 5

Applications

Text-to-Speech Models

Text-to-Speech Models

$$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{An audio file} \\ \mathbf{y} : \text{A text} \end{cases}$$

Text-to-Speech Models

Text-to-Speech Models

$$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{An audio file} \\ \mathbf{y} : \text{A text} \end{cases}$$

Real-World Sample

Listen to the following speech synthesis (source: [2])

“A single Wavenet can
capture the characteristics of many
different speakers with equal fidelity,
not it’s fast.”

$\mathbf{y} =$ $\xrightarrow{\text{Sampling } p(\mathbf{x}|\mathbf{y})} \mathbf{x} =$

Text-to-Image Models

Text-to-Image Models

$$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{An image} \\ \mathbf{y} : \text{A text} \end{cases}$$

Text-to-Image Models

Text-to-Image Models

$$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{An image} \\ \mathbf{y} : \text{A text} \end{cases}$$

Figure: \mathbf{x} for \mathbf{y} = “Teddy bears swimming at the Olympics 400m Butterfly event.”
(source: [?])

Image-to-Image Translation

Image Colorization

$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A Colored image} \\ \mathbf{y} : \text{A Gray - scale image} \end{cases}$

Image-to-Image Translation

Image Colorization

$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A Colored image} \\ \mathbf{y} : \text{A Gray - scale image} \end{cases}$

(a) \mathbf{y}

(b) \mathbf{x}

(c) Ground truth

Figure: Image colorization (source: [3])

Image-to-Image Translation

Image Inpainting

$$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A clean image} \\ \mathbf{y} : \text{A corrupted image} \end{cases}$$

Image-to-Image Translation

Image Inpainting

$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A clean image} \\ \mathbf{y} : \text{A corrupted image} \end{cases}$



(a) \mathbf{y}

(b) \mathbf{x}

(c) Ground truth

Figure: Image inpainting (source: [3])

Image-to-Image Translation

Image Uncropping

$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A clean image} \\ \mathbf{y} : \text{A cropped image} \end{cases}$

Image-to-Image Translation

Image Uncropping

$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A clean image} \\ \mathbf{y} : \text{A cropped image} \end{cases}$

(a) \mathbf{y}

(b) \mathbf{x}

(c) Ground truth

Figure: Image uncropping (source: [3])

Image-to-Image Translation

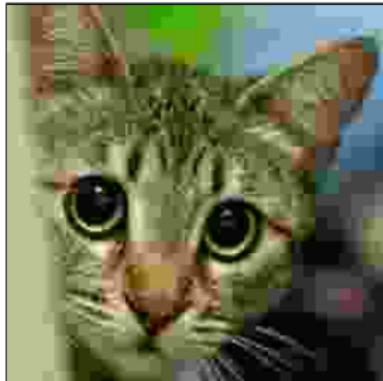
Image Restoration

$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A clean image} \\ \mathbf{y} : \text{A degraded image} \end{cases}$

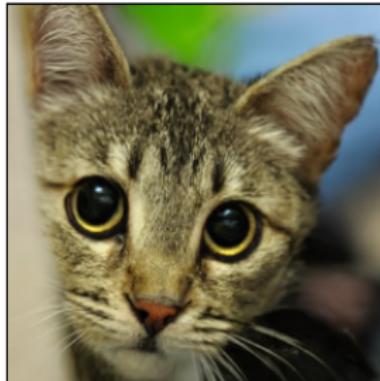
Image-to-Image Translation

Image Restoration

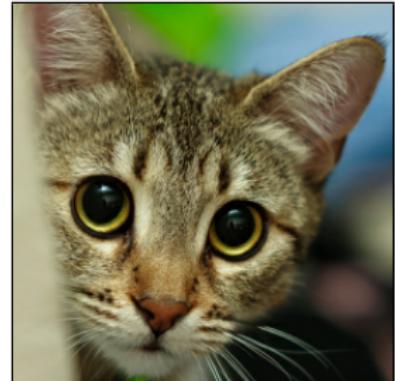
$$p(\mathbf{x}|\mathbf{y}) : \begin{cases} \mathbf{x} : \text{A clean image} \\ \mathbf{y} : \text{A degraded image} \end{cases}$$



(a) \mathbf{y}



(b) \mathbf{x}



(c) Ground truth

Figure: Image restoration (source: [3])

Section 6

Deep Autoregressive Models

Logistic Regression Model

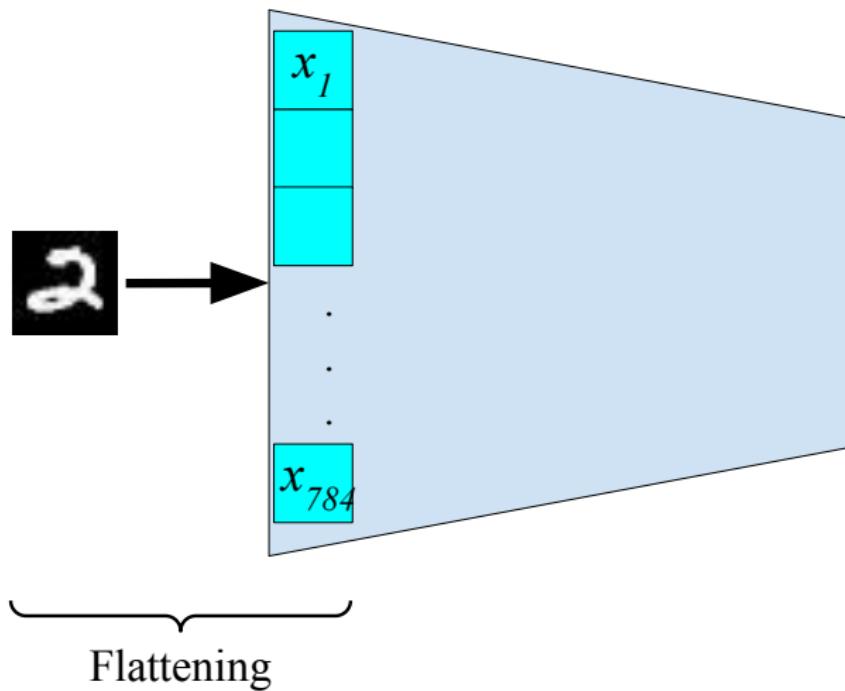


Figure: Logistic regression steps

Logistic Regression Model

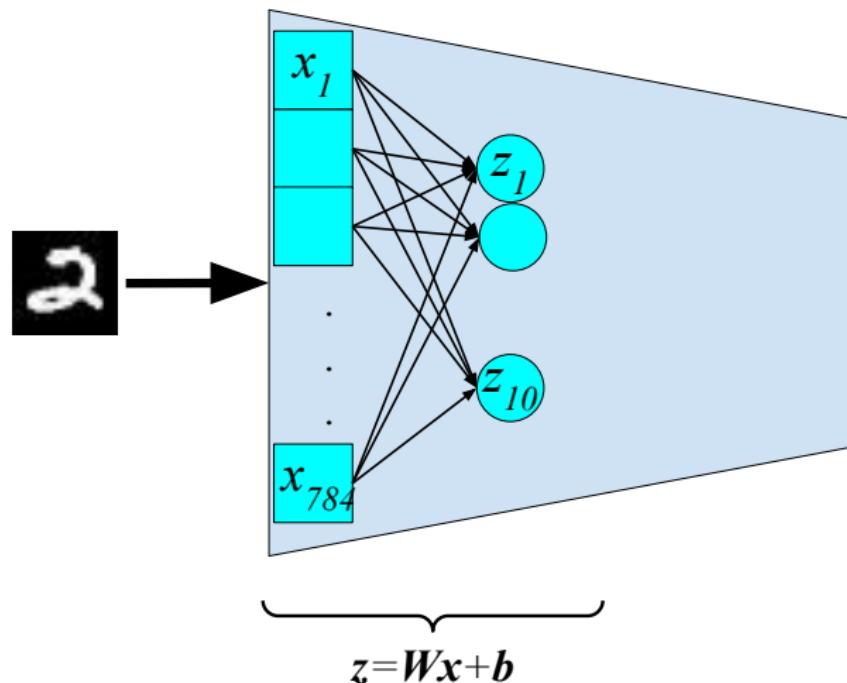


Figure: Logistic regression steps

Logistic Regression Model

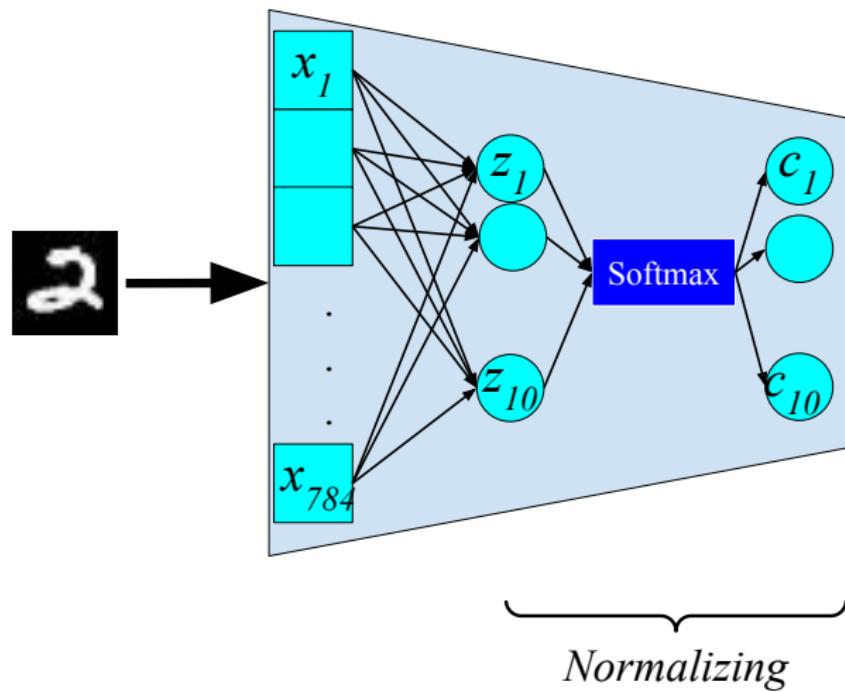


Figure: Logistic regression steps

Logistic Regression Model

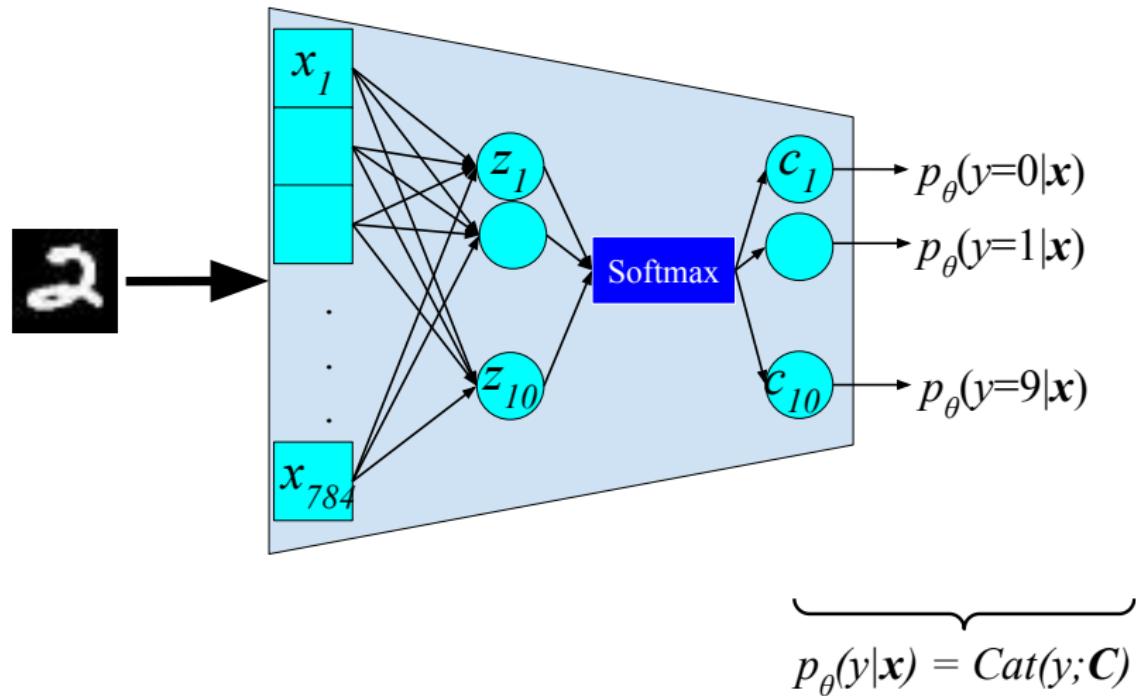
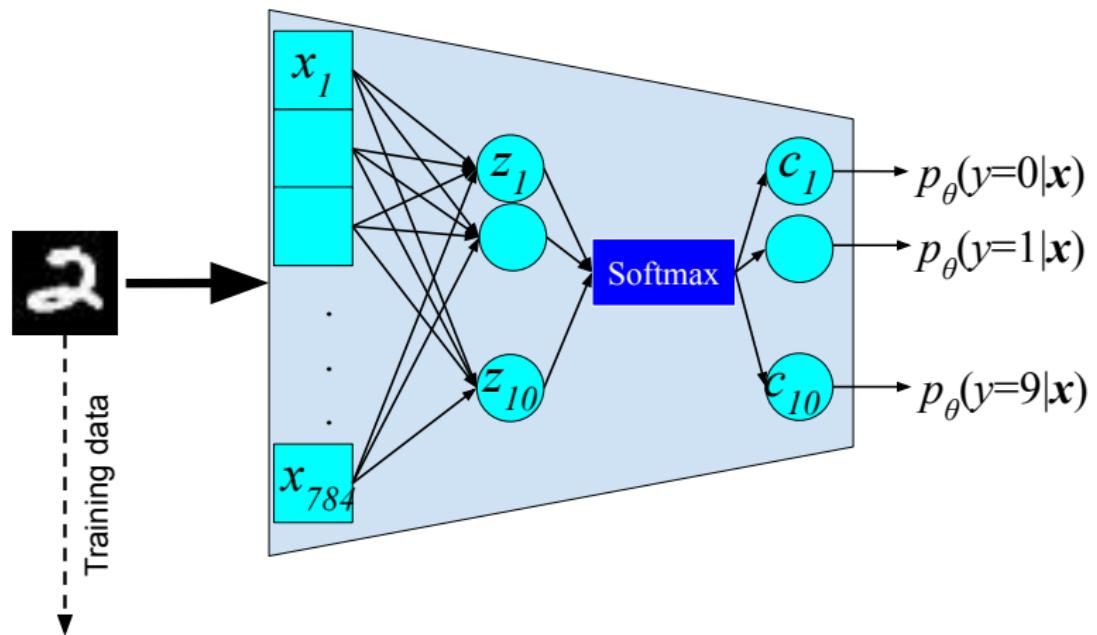


Figure: Logistic regression steps

Logistic Regression Model



$$p_{data}(y|\mathbf{x}) = \text{Cat}(y; [0, 0, 1, 0, \dots, 0])$$

$$p_\theta(y|\mathbf{x}) = \text{Cat}(y; \mathbf{C})$$

Figure: Logistic regression steps

Logistic Regression Model



Figure: Logistic regression steps

Distance Metric

One option for distance metric is:

Distance Metric

One option for distance metric is:

$$L(\theta) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\text{KL} \left(p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right]$$

Learning

Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\text{KL} \left(p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[\sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \end{aligned}$$

Learning

Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\text{KL} \left(p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[\sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \\ &= \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\text{data}}(y|\mathbf{x})}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\text{data}}(y|\mathbf{x})]} \end{aligned}$$

Learning

Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\text{KL} \left(p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[\sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \\ &= \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\text{data}}(y|\mathbf{x})}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\text{data}}(y|\mathbf{x})]} - \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\theta}(\mathbf{x}|y)}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y|\mathbf{x})]} \end{aligned}$$

Learning

Distance Metric

One option for distance metric is:

$$\begin{aligned} L(\theta) &= \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\text{KL} \left(p_{\text{data}}(y|\mathbf{x}) \parallel p_{\theta}(y|\mathbf{x}) \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \left[\sum_y p_{\text{data}}(y|\mathbf{x}) \log \frac{p_{\text{data}}(y|\mathbf{x})}{p_{\theta}(y|\mathbf{x})} \right] \\ &= \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\text{data}}(y|\mathbf{x})}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\text{data}}(y|\mathbf{x})]} - \underbrace{\sum_y \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}, y) \log p_{\theta}(\mathbf{x}|y)}_{\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y|\mathbf{x})]} \end{aligned}$$

While the second term is a function of your model parameters, the first one is independent of the selected Autoregressive model and thus can be omitted in optimization.

Training

Distance Metric

So:

$$\operatorname{argmax}_{\theta} L(\theta) = \operatorname{argmax}_{\theta} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y | \mathbf{x})]$$

Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Training

Distance Metric

So:

$$\operatorname{argmax}_{\theta} L(\theta) = \operatorname{argmax}_{\theta} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y | \mathbf{x})]$$

Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Now assume that instead of $p(\mathbb{X})$, we just have access to N independent samples of random variable \mathbb{X} as $\mathbf{x}_1, \dots, \mathbf{x}_N$.

Training

Distance Metric

So:

$$\operatorname{argmax}_{\theta} L(\theta) = \operatorname{argmax}_{\theta} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\theta}(y | \mathbf{x})]$$

Monte Carlo Estimation

Consider the following expectation:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] = \int p(\mathbf{x}) f(\mathbf{x}) d\mathbf{x}$$

Now assume that instead of $p(\mathbb{X})$, we just have access to N independent samples of random variable \mathbb{X} as $\mathbf{x}_1, \dots, \mathbf{x}_N$. Then expectation can be approximated as:

$$\mathbb{E}_{\mathbf{x} \sim p(\mathbb{X})} [f(\mathbf{x})] \simeq \frac{1}{N} \sum_n f(\mathbf{x}_n)$$

Training

Optimization

Using Monte-Carlo estimation, we have the following optimization problem:

$$\begin{aligned}\boldsymbol{\theta}^* &= \operatorname{argmax}_{\boldsymbol{\theta}} -\mathbb{E}_{(\mathbf{x}, y) \sim p_{\text{data}}(\mathbb{X}, Y)} [\log p_{\boldsymbol{\theta}}(y | \mathbf{x})] \\ &\simeq \operatorname{argmax}_{\boldsymbol{\theta}} -\frac{1}{N} \sum_{i=1}^N \log p_{\boldsymbol{\theta}}(y_i | \mathbf{x}_i)\end{aligned}$$

Sampling

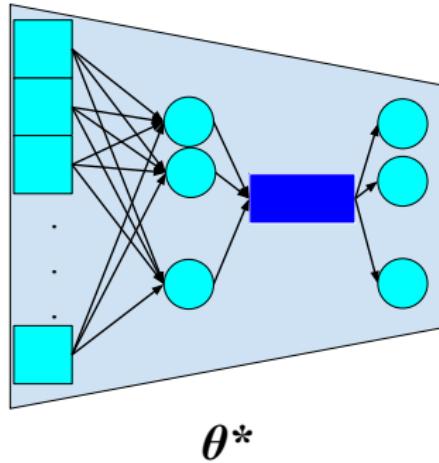


Figure: Sampling a trained model

Sampling

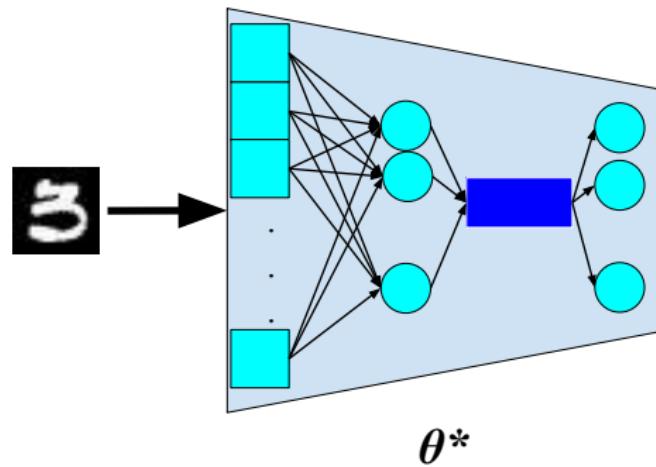


Figure: Sampling a trained model

Sampling

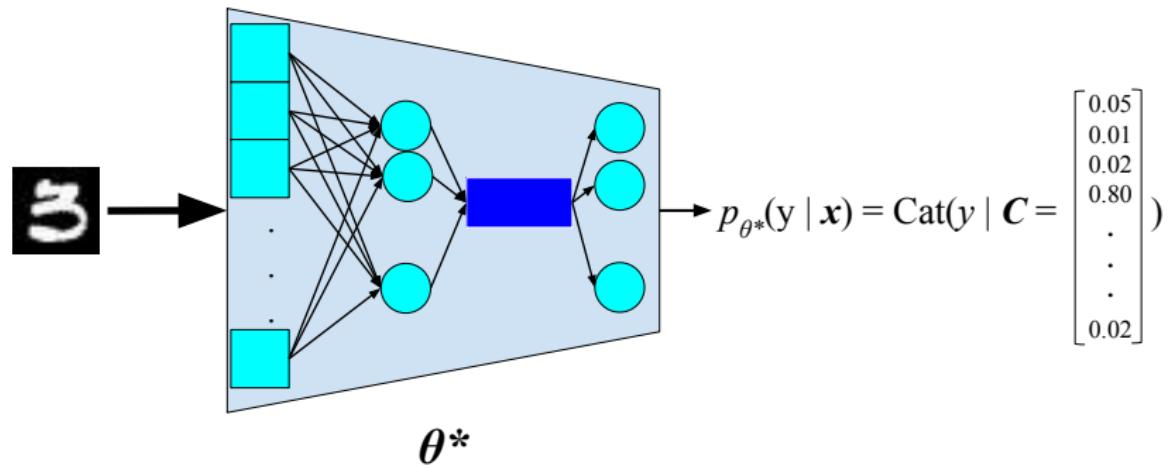


Figure: Sampling a trained model

Sampling

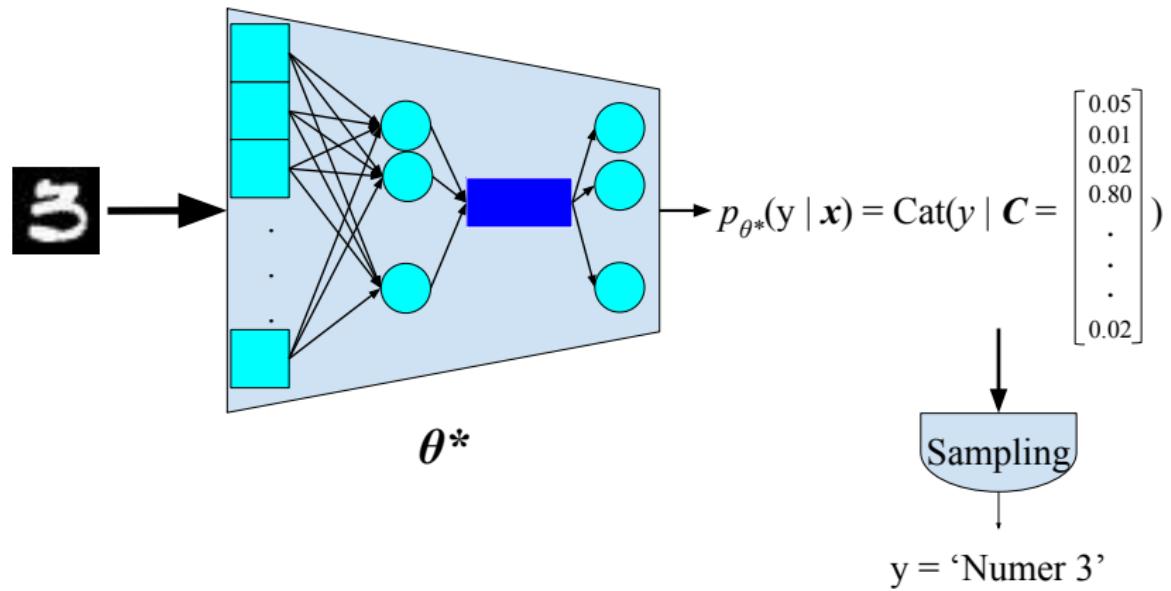


Figure: Sampling a trained model

Generative Modeling

Assume we just have MINST image $\{\mathbf{x}_i\}_{i=1}^N$ without any label and we want to estimate generating distribution $p(\mathbf{x})$ where $\mathbf{x} \in \mathbb{R}^{784}$.

Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model $p_{\text{data}}(y|\mathbf{x})$ and y was a one-dimensional random variable, here \mathbf{x} is a high-dimensional random vector.

- ☞ It seems that we can't use logistic regression here.
- ☞ We can model each dimension separately because $x_i \in \{0, 1, 2, \dots, 255\}$

Chain Rule

Based on the chain rule, we have:

$$p(\mathbf{x}) = p(x_1)p(x_2|\mathbf{x}_{<2}) \dots p(x_d|\mathbf{x}_{} \triangleq [x_1, \dots, x_{d-1}]^T$$

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$

Figure: Using logistic regression for generative modeling

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$

Figure: Using logistic regression for generative modeling

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{*}) \times \dots \times p(x_D | \mathbf{x}_{)})*$$

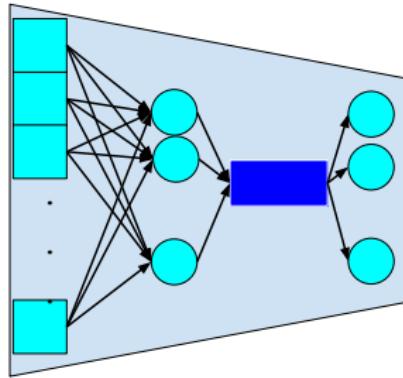
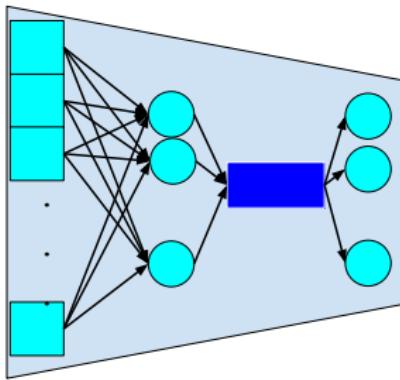


Figure: Using logistic regression for generative modeling

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | x_{<2}) \times \dots \times p(x_i | x_{<i}) \times \dots \times p(x_D | x_{<D})$$



$$W_i, b_i$$

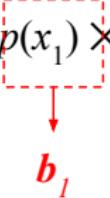
Figure: Using logistic regression for generative modeling

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$

Figure: Using logistic regression for generative modeling

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$


b_1

Figure: Using logistic regression for generative modeling

Modeling

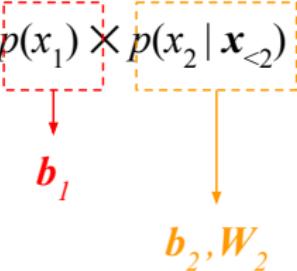
$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$


Diagram illustrating the decomposition of a joint probability $p(\mathbf{x})$ into a product of conditional probabilities. The equation is shown as:

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$

Two specific terms are highlighted with dashed boxes: $p(x_1)$ (red dashed box) and $p(x_2 | \mathbf{x}_{<2})$ (orange dashed box). Arrows point from these highlighted terms to learned parameters: b_1 (under the red box) and b_2, W_2 (under the orange box).

Figure: Using logistic regression for generative modeling

Modeling

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$

The diagram illustrates the decomposition of a joint probability $p(\mathbf{x})$ into a product of conditional probabilities. The joint probability is shown as:

$$p(\mathbf{x}) = p(x_1) \times p(x_2 | \mathbf{x}_{<2}) \times \dots \times p(x_i | \mathbf{x}_{<i}) \times \dots \times p(x_D | \mathbf{x}_{<D})$$

Each term $p(x_i | \mathbf{x}_{<i})$ is enclosed in a dashed box of a specific color (red, orange, blue) and has a corresponding arrow pointing down to a label below it. The first term has an arrow to b_1 . The second term has an arrow to b_2, W_2 . The i -th term has an arrow to W_i, b_i .

Figure: Using logistic regression for generative modeling

Modeling

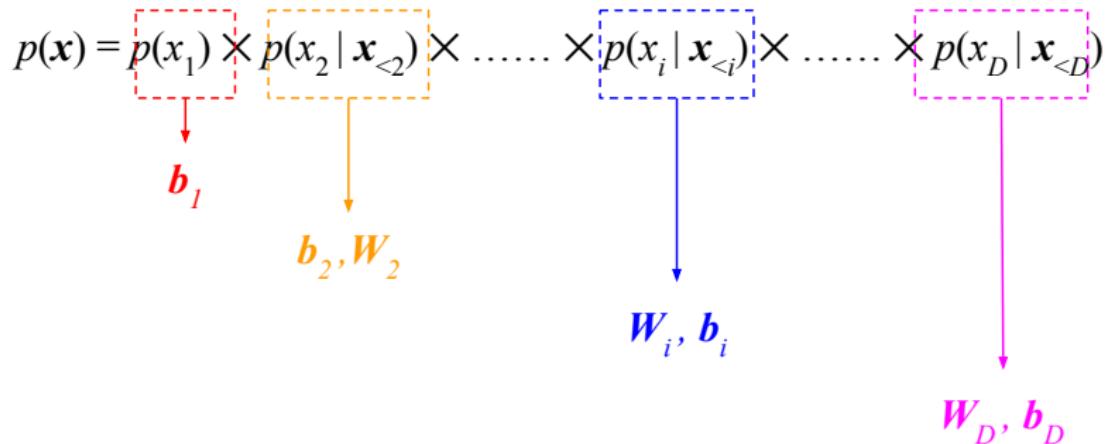
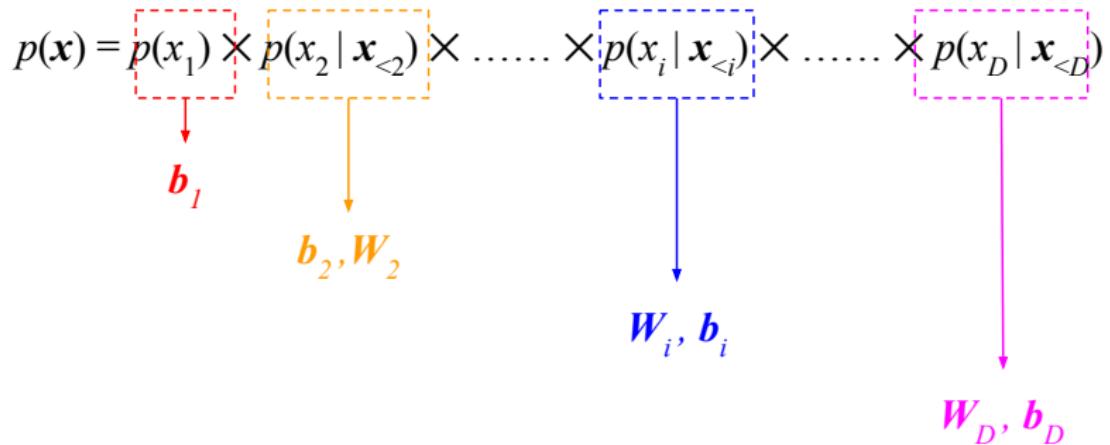


Figure: Using logistic regression for generative modeling

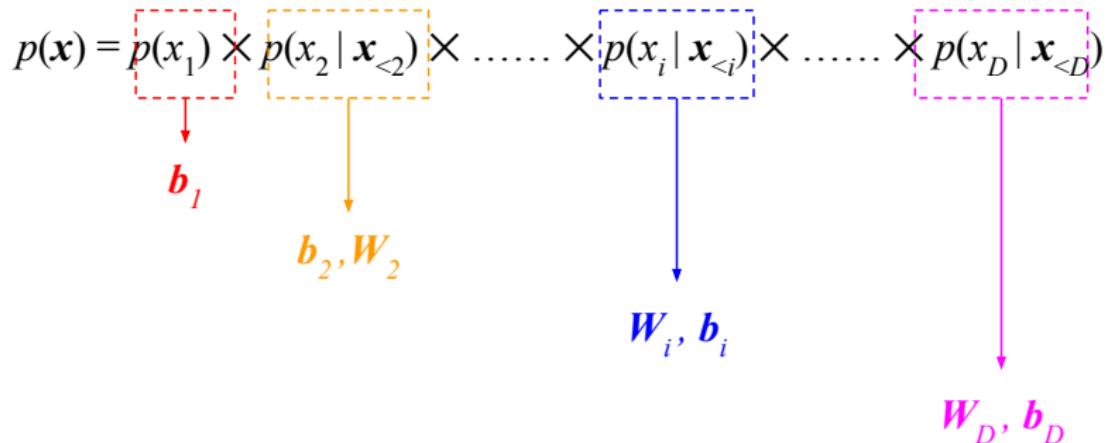
Modeling



$$x_i \in \{0, 1, \dots, 255\} \Rightarrow \begin{cases} \mathbf{b}_i \in R^{256} \\ \mathbf{W}_i \in R^{256 \times i} \end{cases} \quad \forall \quad 1 \leq i \leq D$$

Figure: Using logistic regression for generative modeling

Modeling



$$\boldsymbol{\theta} = \{ \mathbf{b}_1, \mathbf{W}_2, \mathbf{b}_2, \dots, \mathbf{W}_i, \mathbf{b}_i, \dots, \mathbf{W}_D, \mathbf{b}_D \}$$

Figure: Using logistic regression for generative modeling

Distance Metric

Distance Metric

We want to compare two distributions p_{data} and p_{θ} , thus we can use KL divergence as:

$$L(\theta) = \text{KL}(p_{\text{data}} \| p_{\theta}) =$$

Distance Metric

Distance Metric

We want to compare two distributions p_{data} and p_{θ} , thus we can use KL divergence as:

$$L(\theta) = \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\log \left(\frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right]$$

Distance Metric

Distance Metric

We want to compare two distributions p_{data} and p_{θ} , thus we can use KL divergence as:

$$\begin{aligned} L(\theta) &= \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\log \left(\frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \log \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \end{aligned}$$

Distance Metric

Distance Metric

We want to compare two distributions p_{data} and p_{θ} , thus we can use KL divergence as:

$$\begin{aligned} L(\theta) &= \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\log \left(\frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \log \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \end{aligned}$$

Using above definition, we know $L(\theta) = 0$ iff $p_{\theta}(\mathbb{X}) = p_{\text{data}}(\mathbb{X})$. We can rewrite $L(\theta)$ as:

$$L(\theta) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\text{data}}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Distance Metric

Distance Metric

We want to compare two distributions p_{data} and p_{θ} , thus we can use KL divergence as:

$$\begin{aligned} L(\theta) &= \text{KL}(p_{\text{data}} \| p_{\theta}) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} \left[\log \left(\frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right] \\ &= \sum_{\mathbf{x}} p_{\text{data}}(\mathbf{x}) \log \frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \end{aligned}$$

Using above definition, we know $L(\theta) = 0$ iff $p_{\theta}(\mathbb{X}) = p_{\text{data}}(\mathbb{X})$. We can rewrite $L(\theta)$ as:

$$L(\theta) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\text{data}}(\mathbf{x})] - \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Because the first term on the right-hand side is independent of θ , we have:

$$\theta^* = \underset{\theta}{\operatorname{argmin}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} \left[\log \left(\frac{p_{\text{data}}(\mathbf{x})}{p_{\theta}(\mathbf{x})} \right) \right] \equiv \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

From KL divergence to Model Likelihood

Model Likelihood

We see:

$$\theta^* = \operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Thus:

From KL divergence to Model Likelihood

Model Likelihood

We see:

$$\theta^* = \operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Thus:

- Desirable situation is when $p_{\theta}(\mathbb{X})$ assign high probability to probable regions in $p_{\text{data}}(\mathbb{X})$

From KL divergence to Model Likelihood

Model Likelihood

We see:

$$\theta^* = \operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Thus:

- Desirable situation is when $p_{\theta}(\mathbb{X})$ assign high probability to probable regions in $p_{\text{data}}(\mathbb{X})$
- We have yet a problem: No access to p_{data}

From KL divergence to Model Likelihood

Model Likelihood

We see:

$$\theta^* = \underset{\theta}{\operatorname{argmax}} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\theta}(\mathbf{x})]$$

Thus:

- Desirable situation is when $p_{\theta}(\mathbb{X})$ assign high probability to probable regions in $p_{\text{data}}(\mathbb{X})$
- We have yet a problem: No access to p_{data}
- $\mathbb{H}(p_{\text{data}}(\mathbb{X})) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\text{data}}(\mathbf{x})]$ is the maximum accessible objective value where $\mathbb{H}(p_{\text{data}}(\mathbb{X}))$ is the *entropy* defined as:

$$\mathbb{H}(p_{\text{data}}(\mathbb{X})) = \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}} [\log p_{\text{data}}(\mathbf{x})]$$

Model Likelihood Estimation

Model Likelihood Estimation

We are interested in solving the following problem:

$$\theta^* = \operatorname*{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\theta}(\mathbf{x})]$$

but we don't have access to p_{data} and instead, we have access to independent samples from the distribution $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$.

Model Likelihood Estimation

Model Likelihood Estimation

We are interested in solving the following problem:

$$\theta^* = \operatorname{argmax}_{\theta} \mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\theta}(\mathbf{x})]$$

but we don't have access to p_{data} and instead, we have access to independent samples from the distribution $\mathcal{D} = \{\mathbf{x}_i\}_{i=1}^N$.

Solution via Monte Carlo Estimate

Using the Monte Carlo estimate we have:

$$\mathbb{E}_{\mathbf{x} \sim p_{\text{data}}(\mathbb{X})} [\log p_{\theta}(\mathbf{x})] \simeq \frac{1}{N} \sum_{n=1}^N \log p_{\theta}(\mathbf{x}_n)$$

Thus:

$$\theta^* = \operatorname{argmax}_{\theta} \frac{1}{N} \sum_{n=1}^N \log p_{\theta}(\mathbf{x}_n)$$

Thank You!

Thank you for your attention!

Do you have any questions or comments?

Contact Information

Sajjad Amini
Email: samini@umass.edu

References I

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben Poole,

“Score-based generative modeling through stochastic differential equations,”
arXiv preprint arXiv:2011.13456, 2020.

Aaron van den Oord, Sander Dieleman, Heiga Zen, Karen Simonyan, Oriol Vinyals, Alex Graves, Nal Kalchbrenner, Andrew Senior, and Koray Kavukcuoglu,
“Wavenet: A generative model for raw audio,”
arXiv preprint arXiv:1609.03499, 2016.

Chitwan Saharia, William Chan, Huiwen Chang, Chris Lee, Jonathan Ho, Tim Salimans, David Fleet, and Mohammad Norouzi,
“Palette: Image-to-image diffusion models,”
in *ACM SIGGRAPH 2022 Conference Proceedings*, 2022, pp. 1–10.