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Disclaimer

The financial examples and data presented are for illustrative purposes
only.
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Image Sources

All images in this presentation were generated using ChatGPT unless
otherwise cited.
Each image has been created to visually enhance the topics discussed and
provide illustrative support.
For images not generated by ChatGPT, sources are cited directly in the
title.
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Section 1

Intuition
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Investment Challenge

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Activity

Splurging

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Activity

Splurging Luxuries
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Investment Challenge

Activity

Splurging Luxuries Tearing

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Activity

Splurging Luxuries Tearing Firing

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Activity

Splurging Luxuries Tearing Firing Gambling

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Activity

Splurging Luxuries Tearing Firing Gambling Travelling

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Investment Challenge

Activity

Stocks Bonds Gold Art

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Investment Challenge

Activity

Stocks Bonds Gold Art ? ?

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Investment Challenge

Activity

Stocks Bonds Gold Art Cryptocurrency Real estate

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Investment Challenge

Axioms of Investment Challenge 
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m
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Figure: From Axioms of our challenge to Axioms of probability
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Section 2

Concept
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Parametric Probability Density Function (PDF)

pθ(X)

Figure: Your new budget is your parametric PDF
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Parametric Probability Density Function (PDF)

Image

pθ(X)x∊ ℝ256×256 pθ(x)∊ ℝ

Figure: Your new budget is your parametric PDF
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Learning Rooms!

images

pθ(X)

Figure: Learning to represent rooms
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Learning Rooms!
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Learning Rooms!
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Section 3

Approaches
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Subsection 1

Autoregressive Modeling
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Autoregressive Modeling

"You can generate data if you can predict its future given
its past!"
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Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52
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Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

[EOS]

pθ(w4 | w1=[I], … , w3=[going])

I am going 

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52



Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

[EOS]

pθ(w4 | w1=[I], … , w3=[going])

I am going 

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52



Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

[EOS]

pθ(w4 | w1=[I], … , w3=[going])

I am going 

I am going home 

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52



Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

[EOS]

pθ(w5 | w1=[I], … , w4=[home])

I am going home 

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52



Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

[EOS]

pθ(w5 | w1=[I], … , w4=[home])

I am going home 

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52



Language Modeling Using Autoregressive Models

[I] [going] [you] [home] [class] [is] [am]

D
ic
tio
na
ry

[EOS]

pθ(w5 | w1=[I], … , w4=[home])

I am going home 

I am going home [EOS] 

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 16 / 52



Scaling to ChatGPT

[aardvark] [Zymurgy]C
H

at
G

P
T 

D
ic

tio
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ry

[EOS]

~600,000 Words

Figure: ChatGPT built on top of an Autoregressive model
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~600,000 Words

George has three brothers and one sister. How many people are in his family, 
including his mother and father?

George has three brothers and one sister. How many people are in his family, 

including his mother and father? George has three brothers and one sister, making a 

total of five children. Including his mother and father, there are seven people in 

George's family.
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Subsection 2

Variational Autoencoder
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Variational Autoencoder

"You can generate data if you can compress it efficiently!"
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Variational Autoencoders

Gaussian Distribution Pool in ℝ50

 N(0 , I)

Figure: Compression learning as a method of generative modeling
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Subsection 3

Generative Adversarial Nets
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Generative Adversarial Nets

"Good generated samples are those that are indistinguishable
from the real ones!"
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Generative Adversarial Nets

Figure: Using an Inspector [Discriminator] to detect generation
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Generative Adversarial Nets

Generated

Real

Figure: Using an Inspector [Discriminator] to detect generation

Sajjad Amini COMPSCI 589 - Summer 2024 Approaches 23 / 52



Generative Adversarial Nets

p( generated | x)

p( real | x)

Discriminator

p( [type] | x)

Figure: Using an Inspector [Discriminator] to detect generation
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Generative Adversarial Nets

p( generated | x) =

p( real | x) =

Discriminator

p( [type] | x)

Figure: Examining the Discriminator
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Generative Adversarial Nets

p( generated | x) = 1.0

p( real | x) = 0.0

Discriminator

p( [type] | x)

Figure: Examining the Discriminator
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Generative Adversarial Nets

pθ(x)

Loss: L 100% Accuracy

Figure: Updating generation
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Generative Adversarial Nets

pθ(x)

Loss: L

Update θ to increase L

100% Accuracy

Figure: Updating generation
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Generative Adversarial Nets

Loss: L 50% Accuracy

Figure: Updating generation
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Subsection 4

Diffusion Models
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Diffusion Models

"You can generate data if you can denoise it"
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Diffusion Models Denoiser

𝜎

Figure: Denoiser module
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Diffusion Models Generation

Sampling
ℕ (0 ,I )

Figure: Generation using diffusion modeld (images source: [1])
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Section 4

Extention to Conditional Generation
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Learning Conditional Distributions

images

pθ(X | y =‘bedroom’)

Figure: Learning to represent bedrooms
Sajjad Amini COMPSCI 589 - Summer 2024 Extention to Conditional Generation 31 / 52



Learning Conditional Distributions

Changing θ 
[Learning]

images

pθ(X | y =‘bedroom’)

Figure: Learning to represent bedrooms
Sajjad Amini COMPSCI 589 - Summer 2024 Extention to Conditional Generation 31 / 52



Learning Conditional Distributions

Changing θ 
[Learning]

images

pθ(X | y =‘bedroom’)

Figure: Learning to represent bedrooms
Sajjad Amini COMPSCI 589 - Summer 2024 Extention to Conditional Generation 31 / 52



Learning Conditional Distributions

? ?
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Section 5

Applications

Sajjad Amini COMPSCI 589 - Summer 2024 Applications 32 / 52



Text-to-Speech Models

Text-to-Speech Models

p(x|y) :
{
x : An audio file

y : A text

Real-World Sample
Listen to the following speech synthesis (source: [2])

y =

“A single Wavenet can
capture the characteristics of many
different speakers with equal fidelity,

not it’s fast.”

Samplingp(x|y)
==========⇒ x = Play
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}
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Text-to-Speech Models

p(x|y) :
{
x : An audio file

y : A text

Real-World Sample
Listen to the following speech synthesis (source: [2])

y =
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}



Text-to-Image Models

Text-to-Image Models

p(x|y) :
{
x : An image

y : A text

Sprouts in the shape of text ‘Imagen’ coming out of a
fairytale book.

A photo of a Shiba Inu dog with a backpack riding a
bike. It is wearing sunglasses and a beach hat.

A high contrast portrait of a very happy fuzzy panda
dressed as a chef in a high end kitchen making dough.
There is a painting of flowers on the wall behind him.

Teddy bears swimming at the Olympics 400m Butter-
fly event.

A cute corgi lives in a house made out of sushi. A cute sloth holding a small treasure chest. A bright
golden glow is coming from the chest.

A brain riding a rocketship heading towards the moon. A dragon fruit wearing karate belt in the snow. A strawberry mug filled with white sesame seeds. The
mug is floating in a dark chocolate sea.

Figure 1: Select 1024× 1024 Imagen samples for various text inputs. We only include photorealistic
images in this figure and leave artistic content to the Appendix, since generating photorealistic images
is more challenging from a technical point of view. Figs. A.1 to A.3 show more samples.

2

Figure: x for y = “Teddy bears swimming at the Olympics 400m Butterfly event.”
(source: [?])
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Image-to-Image Translation

Image Colorization

p(x|y) :
{
x : A Colored image

y : A Gray − scale image

Palette: Image-to-Image Diffusion Models
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ABSTRACT
This paper develops a unified framework for image-to-image trans-
lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.

(c) Ground truth

Figure: Image colorization (source: [3])
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lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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ABSTRACT
This paper develops a unified framework for image-to-image trans-
lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.

(c) Ground truth

Figure: Image colorization (source: [3])
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Image-to-Image Translation

Image Inpainting

p(x|y) :
{
x : A clean image

y : A corrupted image
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ABSTRACT
This paper develops a unified framework for image-to-image trans-
lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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ABSTRACT
This paper develops a unified framework for image-to-image trans-
lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.

(c) Ground truth

Figure: Image inpainting (source: [3])
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.

(c) Ground truth

Figure: Image inpainting (source: [3])
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Figure 1: Image-to-image diffusion models are able to gen-
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customization or auxiliary loss.

(b) x

Palette: Image-to-Image Diffusion Models
Chitwan Saharia

Google Research, Brain Team
Toronto, ON, Canada
sahariac@google.com

William Chan
Google Research, Brain Team

Toronto, ON, Canada
williamchan@google.com

Huiwen Chang
Google Research

New York, NY, USA
huiwenchang@google.com

Chris A. Lee
Google Research

Mountain View, CA, USA
chrisalee@google.com

Jonathan Ho
Google Research, Brain Team

New York, NY, USA
jonathanho@google.com

Tim Salimans
Google Research, Brain Team
Amsterdam, Netherlands
salimans@google.com

David Fleet
Google Research, Brain Team

Toronto, ON, Canada
davidfleet@google.com

Mohammad Norouzi
Google Research, Brain Team

Toronto, ON, Canada
mnorouzi@google.com

ABSTRACT
This paper develops a unified framework for image-to-image trans-
lation based on conditional diffusion models and evaluates this
framework on four challenging image-to-image translation tasks,
namely colorization, inpainting, uncropping, and JPEG restoration.
Our simple implementation of image-to-image diffusionmodels out-
performs strong GAN and regression baselines on all tasks, without
task-specific hyper-parameter tuning, architecture customization,
or any auxiliary loss or sophisticated new techniques needed. We
uncover the impact of an L2 vs. L1 loss in the denoising diffusion
objective on sample diversity, and demonstrate the importance of
self-attention in the neural architecture through empirical studies.
Importantly, we advocate a unified evaluation protocol based on
ImageNet, with human evaluation and sample quality scores (FID,
Inception Score, Classification Accuracy of a pre-trained ResNet-
50, and Perceptual Distance against original images). We expect
this standardized evaluation protocol to play a role in advancing
image-to-image translation research. Finally, we show that a gen-
eralist, multi-task diffusion model performs as well or better than
task-specific specialist counterparts. Check out https://diffusion-
palette.github.io/ for an overview of the results and code.

CCS CONCEPTS
• Computing methodologies→ Neural networks.

KEYWORDS
Deep learning, Generative models, Diffusion models.
ACM Reference Format:
Chitwan Saharia, William Chan, Huiwen Chang, Chris A. Lee, Jonathan
Ho, Tim Salimans, David Fleet, and Mohammad Norouzi. 2022. Palette:

This work is licensed under a Creative Commons Attribution-Share Alike
International 4.0 License.

SIGGRAPH ’22 Conference Proceedings, August 7–11, 2022, Vancouver, BC, Canada
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9337-9/22/08.
https://doi.org/10.1145/3528233.3530757

Image-to-Image Diffusion Models. In Special Interest Group on Computer
Graphics and Interactive Techniques Conference Proceedings (SIGGRAPH ’22
Conference Proceedings), August 7–11, 2022, Vancouver, BC, Canada. ACM,
New York, NY, USA, 10 pages. https://doi.org/10.1145/3528233.3530757

Input Output Original

Co
lo
riz

at
io
n

In
pa
in
tin

g
Un

cr
op

pi
ng

JP
EG

re
st
or
at
io
n

Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.

(c) Ground truth

Figure: Image uncropping (source: [3])
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.
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Figure 1: Image-to-image diffusion models are able to gen-
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Figure 1: Image-to-image diffusion models are able to gen-
erate high-fidelity output across tasks without task-specific
customization or auxiliary loss.

(c) Ground truth

Figure: Image uncropping (source: [3])
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(c) Ground truth

Figure: Image restoration (source: [3])
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(c) Ground truth

Figure: Image restoration (source: [3])
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Learning

Distance Metric
One option for distance metric is:

L(θ) = Ex∼pdata(X)

[
KL

(
pdata

(
y|x

) ∥∥ pθ
(
y|x

))]

=
∑
x

pdata(x)

[∑
y

pdata(y|x) log
pdata(y|x)
pθ(y|x)

]
=

∑
y

∑
x

pdata(x, y) log pdata(y|x)︸ ︷︷ ︸
E(x,y)∼pdata(X,Y )[log pdata(y|x)]

−
∑
y

∑
x

pdata(x, y) log pθ(x|y)︸ ︷︷ ︸
E(x,y)∼pdata(X,Y )[log pθ(y|x)]

While the second term is a function of your model parameters, the first one is
independent of the selected Autoregressive model and thus can be omitted in
optimization.
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Training

Distance Metric
So:

argmax
θ

L(θ) = argmax
θ

−E(x,y)∼pdata(X,Y ) [log pθ(y|x)]

Monte Carlo Estimation
Consider the following expectation:

Ex∼p(X)
[
f(x)

]
=

∫
p(x)f(x)dx

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as x1, . . . ,xN .Then expectation can be approximated as:

Ex∼p(X)
[
f(x)

]
≃ 1

N

∑
n

f(xn)
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Training

Optimization
Using Monte-Carlo estimation, we have the following optimization problem:

θ⋆ =argmax
θ

−E(x,y)∼pdata(X,Y ) [log pθ(y|x)]

≃ argmax
θ

− 1

N

N∑
i=1

log pθ(yi|xi)
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Sampling
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Figure: Sampling a trained model
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Modeling

Generative Modeling
Assume we just have MINST image {xi}Ni=1 without any label and we want to
estimate generating distribution p(x) where x ∈ R784.

Challenge: High-dimensional Random Vector
In contrast to logistic regression where we model pdata(y|x) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.

☞ It seems that we can’t use logistic regression here.
☞ We can model each dimension separately because xi ∈ {0, 1, 2, . . . , 255}

Chain Rule
Based on the chain rule, we have:

p(x) = p(x1)p(x2|x<2) . . . p(xd|x<d) . . . p(xD|x<D), x<d ≜ [x1, . . . , xd−1]
T
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Modeling

p(x) = p(x1) ⨉ p(x2 | x<2) ⨉ …… ⨉ p(xi | x<i) ⨉ …… ⨉ p(xD | x<D)

Figure: Using logistic regression for generative modeling
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Distance Metric

Distance Metric
We want to comapre two distribution pdata and pθ, thus we can use KL diver-
gence as:

L(θ) = KL(pdata∥pθ) =

Ex∼pdata(X)

[
log

(
pdata(x)

pθ(x)

)]
=

∑
x

pdata(x) log
pdata(x)

pθ(x)

Using above definition, we know L(θ) = 0 iff pθ(X) = pdata(X). We can rewrite
L(θ) as:

L(θ) = Ex∼pdata
[log pdata(x)]− Ex∼pdata

[log pθ(x)]

Because the first term on the right-hand side is independent of θ, we have:

θ⋆ = argmin
θ

Ex∼pdata

[
log

(
pdata(x)

pθ(x)

)]
≡ argmax

θ
Ex∼pdata

[log pθ(x)]
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From KL divergence to Model Likelihood

Model Likelihood
We see:

θ⋆ = argmax
θ

Ex∼pdata
[log pθ(x)]

Thus:

Desirable situation is when pθ(X) assign high probability to probable
regions in pdata(X)
We have yet a problem: No access to pdata

H(pdata(X)) = Ex∼pdata(X) [log pdata(x)] is the maximum accessible
objective value where H(pdata(X)) is the entropy defined as:

H(pdata(X)) = Ex∼pdata
[log pdata(x)]
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Model Likelihood Estimation

Model Likelihood Estimation
We are interested in solving the following problem:

θ⋆ = argmax
θ

Ex∼pdata(X) [log pθ(x)]

but we don’t have access to pdata and instead, we have access to independent
samples from the distribution D = {xi}Ni=1.

Solution via Monte Carlo Estimate
Using the Monte Carlo estimate we have:

Ex∼pdata(X) [log pθ(x)] ≃
1

N

N∑
n=1

log pθ(xn)

Thus: θ⋆ = argmax
θ

1

N

N∑
n=1

log pθ(xn)
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Thank You!

Thank you for your attention!

Do you have any questions or comments?

Contact Information

Sajjad Amini
Email: samini@umass.edu
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