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Disclaimer

o The financial examples and data presented are for illustrative purposes
only.
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Image Sources

o All images in this presentation were generated using ChatGPT unless
otherwise cited.

e Each image has been created to visually enhance the topics discussed and
provide illustrative support.

e For images not generated by ChatGPT, sources are cited directly in the
title.
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Section 1

Intuition




Investment Challenge

Figure: Investment Challenge (Budget: $1M, Divesting is not allowed)
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Investment Challenge

Splurging Te_aring

Activity
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Investment Challenge
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Investment Challenge

Splurging Tae_aring Gambling

Activity
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Investment Challenge

Splurging Tae_aring Gambling Travelling

Activity
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Investment Challenge

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Investment Challenge

Activity

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Investment Challenge

Activity

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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Activity

Figure: Investment challenge with help of investor (Budget: $1M, Divesting is not
allowed)
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ment Challenge

Axioms of Investment Challenge

Limited
Budget

Figure: From Axioms of our challenge to Axioms of probability
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Figure: From Axioms of our challenge to Axioms of probability
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Figure: From Axioms of our challenge to Axioms of probability
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Investment Challenge

Axioms of Investment Challenge

Limited
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Figure: From Axioms of our challenge to Axioms of probability
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Figure: From Axioms of our challenge to Axioms of probability
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Investment Challenge

Axioms of Investment Challenge

Axioms of Probability
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Figure: From Axioms of our challenge to Axioms of probability
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Figure: From Axioms of our challenge to Axioms of probability
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Section 2

Concept

Concept



Parametric Probability Density Function (PDF)

P,X)

Figure: Your new budget is your parametric PDF
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Parametric Probability Density Function (PDF)

XERB — p(X) ) )ER

Figure: Your new budget is your parametric PDF
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Parametric Probability Density Function (PDF)

/mpg(w)da: =1

XEREE — pX) (R
po(x) >0

Figure: Your new budget is your parametric PDF
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Parametric Probability Density Function (PDF)

x€ R256x256 —_ pg(X) > pe(x)GIE

Figure: Your new budget is your parametric PDF
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Parametric Probability Density Function (PDF)

x€ RZ56x256 —_ pg(X) > pe(x)GIE

Figure: Your new budget is your parametric PDF
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x€ RZ56><256 —_ pg(X) > pe(x)em

Figure: Your new budget is your parametric PDF
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Learning Rooms!

images

PX)

Figure: Learning to represent rooms
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Learning Room

images

Changing 0
[Learning]
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Figure: Learning to represent rooms
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Figure: Learning to represent rooms
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Figure: Learning to represent rooms
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Learning Rooms!
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Figure: Learning to represent bedrooms
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Section 3

Approaches




Subsection 1

Autoregressive Modeling
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e Modeling

"You can generate data if you can predict its future given
its past!"”
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Language Modeling Using Autoregressive Models

Dictionary

[l [going] [you] [home] [class] [is] [am]

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

Dictionary

[l [going] [you] [home] [class] [is] [am]

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

Sajj

' Pw; | w,=[1], w,=[am])
>
©
5
5) - | I l -
[l [going] [you] [home] [class] [is] [am] [EOS]

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

Sajj

I am going

' pyw, | w=[1], w,=[am])

Dictionary

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

Dictionary

I am going

Figure: Generating the remaining part of a sentence

Sajjad Amini COMPSCI Summer 2024 Approaches



Language Modeling Using Autoregressive Models

Dictionary

I am going

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

I am going home

Dictionary

I am going

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

Dictionary

[ am going home

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

Dictionary

Sajjad Amini

I |

[l [going] [you] [home] [class] [is] [am] [EOS]

[ am going home

Figure: Generating the remaining part of a sentence
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Language Modeling Using Autoregressive Models

I am going home [EOS]

D |

[l [going] [you] [home] [class] [is] [am] [EOS]

Dictionary

[ am going home

Figure: Generating the remaining part of a sentence
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Scaling to ChatGPT

1 CHatGPT Dictionary

B

Figure: ChatGPT built on top of an Autoregressive model
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Scaling to ChatGPT

1 CHatGPT Dictionary

B

George has three brothers and one sister. How many people are in his family,
including his mother and father?

Figure: ChatGPT built on top of an Autoregressive model

d Amini



Scaling to ChatGPT

George has three brothers and one sister. How many people are in his family,
including his mother and father? George has three brothers and one sister, making a
total of five children. Including his mother and father, there are seven people in

George's family.

1 CHatGPT Dictionary

B

George has three brothers and one sister. How many people are in his family,
including his mother and father?

Figure: ChatGPT built on top of an Autoregressive model




Subsection 2

Variational Autoencoder
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Variational Autoencoder

"You can generate data if you can compress it efficiently!”

Sajjad Amini COMPS Summer 2024 Approaches



Variational Autoer

Gaussian Distribution Pool in B

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

Gaussian Distribution Pool in B

+ N0, 1

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

Gaussian Distribution Pool in B

+ N0, 1

€ [R256%256

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

Gaussian Distribution Pool in B

+ N0, 1

Compressor

€ [R256%256

Figure: Compression learning as a method of generative modeling

Sajjad Amini COMPS immer 2024 Approaches



Variational Autoencoders

€ [R256%256

Y

Compressor

Decompressor

Gaussian Distribution Pool in B

+ N0, 1

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

Gaussian Distribution Pool in B

+ N0, 1

| i - r—> Compressor

X € [p256%256 o+

=i - r<— Decompressor

-

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

—> Compressor

Decompressor

Gaussian Distribution Pool in B

+ N0, 1
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Variational Autoencoders

Compressor

Decompressor

Gaussian Distribution Pool in B

+ N0, 1

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

Gaussian Distribution Pool in B

+ N0, 1

Decompressor

Figure: Compression learning as a method of generative modeling
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Variational Autoencoders

Gaussian Distribution Pool in B

+ N0, 1

€ [R256%256 + 4

Decompressor

Figure: Compression learning as a method of generative modeling
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Subsection 3

Generative Adversarial Nets
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» Adversarial Nets

"Good generated samples are those that are indistinguishable
from the real ones!"
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» Adversarial Nets
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» Adversarial Nets
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» Adversarial Nets

Generated

‘E by | Real
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p( generated | x)

Discriminator

p([type] | x)

p(real | x)

Sajjad Amini CO S immer 2024



Generative Adversarial Nets

Sajjad Amini

Discriminator

p([ype] | x)

p( generated | x) =

p(real | x) =

Figure: Examining the Discriminator
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Generative Adversarial Nets

p( generated | x) = 1.0

Discriminator

p([ype] | x)

p(real | x)=0.0

Figure: Examining the Discriminator
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Generative Adversarial Nets

,&r—>

Discriminator

p([ype] | x)

Sajjad Amini

p( generated | x) =

p(real | x) =

Figure: Examining the Discriminator
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Generative Adversarial Nets

p( generated | x) = 0.0

Discriminator
,&r _—

p([ype] | x)

p(real | x)=1.0

Figure: Examining the Discriminator
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Generative Adversarial Nets

Do)

Loss: L

—> 100% Accuracy
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\

\
¥

Po(x) << . Update 0 to increase L

Loss: L

—> 100% Accuracy

Figure: Updating generation
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Loss: L

—> 50% Accuracy
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Subsection 4

Diffusion Models
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"You can generate data if you can denoise it"
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Diffusion Models Denoiser

Figure: Denoiser module
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Diffusion Models Denoiser

Denoiser

Figure: Denoiser module
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Diffusion Models Denoiser

Denoiser ——>

Figure: Denoiser module
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Diffusion Models Generation

Sampling
N(0.I)

Figure: Generation using diffusion modeld (images source: [1])
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Diffusion M

Denoiser 1

Sampling
N(.1)

Figure: Generation using diffusion modeld (images source: [1])
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Denoiser

Sampling
N(.1)

Figure: Generation using diffusion modeld (images source: [1])
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Figure: Generation using diffusion modeld (images source: [1])
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usion Models Generation

Sampling
N(.1)

Denoiser

1

Figure: Generation using diffusion modeld (images source: [1])
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usion Models Generation

Sampling
N(.1)

|-> Denoiser 1

Figure: Generation using diffusion modeld (images source: [1])
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Figure: Generation using diffusion modeld (images source: [1])

Sampling
N(.1)
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Diffusion Models Generation

e
il

Figure: Generation using diffusion modeld (images source: [1])

Sampling
N(.1)
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Section 4

Extention to Conditional Generation
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images

X |y =‘bedroom’)

Figure: Learning to represent bedrooms
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Learning Conditional Distributi

images

Changing 0
[Learning]

P, X |y =‘bedroom’)

Figure: Learning to represent bedrooms
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Learning Conditional Distributions

images

Changing 0
[Learning]

P, X |y =‘bedroom’)

Figure: Learning to represent bedrooms
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Learning Conditional Distributions

images

P, X |y =‘bedroom’)

Figure: Learning to represent bedrooms
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Learning Conditional Distributions

images

41eration

P, X |y =‘bedroom’)

Figure: Learning to represent bedrooms
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Learning Conditional Distributions

images

41eration

P, X |y =‘bedroom’)

Figure: Learning to represent bedrooms
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Section 5

Applications




Text-to-Speech Models

Text-to-Speech Models

(aly) : x : An audio file
PAEIb y: A text
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton1'){ocgs[i].state=false;}}



null

5.7381225


Text-to-Speech Models

Text-to-Speech Models

(aly) : x : An audio file
PAEIb y: A text

Real-World Sample

Listen to the following speech synthesis (source: [2])

“A single Wavenet can
capture the characteristics of many  Samplingp(z|y)
different speakers with equal fidelity, r
not it’s fast.”
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var ocgs=host.getOCGs(host.pageNum);for(var i=0;i<ocgs.length;i++){if(ocgs[i].name=='MediaPlayButton3'){ocgs[i].state=false;}}


Text-to-Image Models

Text-to-Image Models

(zly) : x : An image
PARIL y: A text
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Text-to-Image Models

Text-to-Image Models

(zly) x : An image
xz|y) :
PARIY y: A text

Figure: « for y = “Teddy bears swimming at the Olympics 400m Butterfly event.”
(source: [?])

Applications



Image-to-Image Translation

Image Colorization

x : A Colored image
p(zly) : .
vy : A Gray — scale image

vd Amini CC >S Summer 2024 Applications



Image-to-Image Translation

Image Colorization

x : A Colored image
p(zly) : .
vy : A Gray — scale image

(¢) Ground truth

Figure: Image colorization (source: [3])
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Image-to-Image Translation

Image Inpainting

x : A clean image
p(zly) : :
y : A corrupted image

vd Amini CC >S Summer 2024 Applications



Image-to-Image Translation

Image Inpainting

x : A clean image
p(zly) : :
y : A corrupted image
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Image-to-Image Translation

Image Uncropping

x : A clean image
p(zly) : .
vy : A cropped image
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Image-to-Image Translation

Image Uncropping

x : A clean image
p(zly) : .
vy : A cropped image

(¢) Ground truth

Figure: Image uncropping (source: [3])
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Image-to-Image Translation

Image Restoration

x : A clean image
p(zly) : .
vy : A degraded image
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Image-to-Image Translation

Image Restoration

x : A clean image
p(zly) : .
vy : A degraded image

(¢) Ground truth

Figure: Image restoration (source: [3])
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Section 6

Deep Autoregressive Models
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egression Model

784

Y

Flattening

Figure: Logistic regression steps
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Logistic Regression Model

784

z=Wx+b

Figure: Logistic regression steps
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Logistic Regression Model

784

-~
Normalizing

Figure: Logistic regression steps
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Logistic Regression Model

784

\ J
Y

pyylx) = Cat(y;C)

Figure: Logistic regression steps

Sajjad Amini COMPSCI 589 - Summer 2024 Deep Autoregressive Models



Logistic Regression Model

m
'

784

Training data
=

v
P yua¥X) = Cat(y;[0,0,1,0....,0]) p,Ix) = Cat(y;C)

Figure: Logistic regression steps
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Logistic Regression Model

— p,(0=0[x)
) — P, =1x)
o — pr=9k)
' £ *784
i E Minimizing the Distance
; v }
P 11X = Cat(y;[0,0,1,0,...,0] ) pvx) = Cat(y;C)

Figure: Logistic regression steps
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Learning

One option for distance metric is:
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Learning

One option for distance metric is:

L(0) = Egrpy,ux) | KL (Pdata(ylﬂc) | po (ylw)>
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Learning

Distance Metric

One option for distance metric is:

L(0) = Ezrpaaa()

= Z pdata(m)

KL (pdata(ylw) | po (ylw)ﬂ

Zpdata(y|il:) log szta—(ykl?)]

» po(ylz)
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Learning

Distance Metric

One option for distance metric is:

KL (pdata(ylw) | po (ylw)ﬂ

L(e) = ]Ew"’pdata(x)
. pdata(y|$)

= Zpdata(m) Zpdata(y|a:) log TN
x Yy

= Z Zpdata(wv y) log pdata(y‘w)
y x

po(y|x)

E(2,y)~vpgaps (5. Y) 108 Pdata (y|2)]
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Learning

Distance Metric

One option for distance metric is:

KL (pdata(ylw) | po (ylw)ﬂ

L(e) = Ew"‘Pdaca(X)
= 2 raa(a) | 3 posalyle) Jog P (v[2)
y Do (y|$)

- Zzpdata logpdata y‘w Zzpdata T y 10gp9($|y)

E(2,y)~vpgaps (5. Y) 108 Pdata (y|2)] E(,y)~pgacs (5.Y) 108 Po (y|z)]
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Learning

Distance Metric

One option for distance metric is:

KL (pdata(ylw) | po (ylw)ﬂ

L(e) = EwNPdaca(X)
= 2 raa(a) | 3 posalyle) Jog P (v[2)
y Do (y|$)

- Z Zpdata log pda‘ca(y‘w - Z Zpdata(w7 y) log Do (w|y)

Yy x

E(2,y)~vpgaps (5. Y) 108 Pdata (y|2)] E(,y)~pgacs (5.Y) 108 Po (y|z)]

While the second term is a function of your model parameters, the first one is
independent of the selected Autoregressive model and thus can be omitted in
optimization.

v
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Training

Distance Metric

g L(6) = g —E (a1 ~panea (x,v) [10g Do (y])]

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(@)f (x)dz
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Training

Distance Metric

g L(6) = g —E (a1 ~panea (x,v) [10g Do (y])]

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(@)f (x)dz

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as 1,...,Ty.
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Training

Distance Metric

g L(6) = g —E (a1 ~panea (x,v) [10g Do (y])]

Monte Carlo Estimation

Consider the following expectation:

Eapo [f(@)] = / p(@)f (x)dz

Now assume that instead of p(X), we just have access to N independent samples
of random variable X as @1, ..., xy.Then expectation can be approximated as:

Em~p(X) N Z f xn
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Training

Using Monte-Carlo estimation, we have the following optimization problem:

0" = argimax —E(,y)~paaea (X,Y) [108 Do (Y] )]

N

1
~argmax —— » logpy(yi|z;
max = 3 ool
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Sampling

0*

Figure: Sampling a trained model




Sampling

0*

Figure: Sampling a trained model




Sampling

0.05
0.01
0.02

—> . Py | %)= Catly| €= | "))

0.02

0*

Figure: Sampling a trained model
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Sampling

0.05
0.01
0.02
0.80
Pely | x)=Cat(y | C=|""})
0.02
0* samping
y = ‘Numer 3’

Figure: Sampling a trained model




Generative Modeling

Assume we just have MINST image {x;}Y ; without any label and we want to
estimate generating distribution p(x) where z € R7%4.

Challenge: High-dimensional Random Vector

In contrast to logistic regression where we model pgata(y|z) and y was a one-
dimensional random variable, here x is a high-dimensional random vector.

1= Jt seems that we can’t use logistic regression here.

1= We can model each dimension separately because z; € {0,1,2,...,255}

V.

Based on the chain rule, we have:

p(x) = p(r1)p(w2|T<2) . .. p(Tal®<a) ... p(TD|T<D), Ty £ [x1, ... ,fﬂd—ﬂT
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Figure: Using logistic regression for generative modeling
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Figure: Using logistic regression for generative modeling
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Modeling

PO) = plx,) X plxy [ X)X oo Xip(a| XX e X play | )

Figure: Using logistic regression for generative modeling
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Modeling

PO) = plx,) X plxy [ X)X oo Xip(a| XX e X play | )

W,.b,

Figure: Using logistic regression for generative modeling
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Modeling

p(x)=px) Xpx,|x_) X ...... Xplx[x_ )X ...... Xplx,lx_p)
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Figure: Using logistic regression for generative modeling
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We want to comapre two distribution pga.ta and pg, thus we can use KL diver-
gence as:

L(0) = KL(paatallpe) =
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Distance Metric

Distance Metric

We want to comapre two distribution pga.ta and pg, thus we can use KL diver-
gence as:

L(6) = KL(paatallpe) = Eznpyua ) [log (%ﬂ
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Distance Metric

Distance Metric

We want to comapre two distribution pga.ta and pg, thus we can use KL diver-
gence as:

xr
L(6) = KL(pintalln) = Bampyiy 105 (22250 )]

po(T)
-y og Pata(®)
- ~ pdata(w)l g pe(w)
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Distance Metric

Distance Metric

We want to comapre two distribution pga.ta and pg, thus we can use KL diver-
gence as:

xr
L(6) = KL(pintalln) = Bampyiy 105 (22250 )]

po(T)
-y og Pata(®)
- ~ pdata(w)l g pe(w)

Using above definition, we know L(0) = 0 iff pp(X) = pgata(X). We can rewrite
L(0) as:

L(0) = Eznpyara 108 Pdata(T)] — Eznpy,.. [l0gPo()]
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Distance Metric

Distance Metric

We want to comapre two distribution pga.ta and pg, thus we can use KL diver-
gence as:

atalL
L(g) = KL(pdata”pa) = Emdiata(X) |:10g <pdt()>:|

po(T)
-y og Pdata(®)
- ~ pdata(w)l g pe(w)

Using above definition, we know L(0) = 0 iff pp(X) = pgata(X). We can rewrite
L(0) as:

L(0) = Eznpyara 108 Pdata(T)] — Eznpy,.. [l0gPo()]

Because the first term on the right-hand side is independent of 8, we have:

0" = argminEqpp,,. [log (pdam($)>} = argmax Egp,... [logpg(x)]
0 po(x) 0
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From KL divergence to Model Likelihood

Model Likelihood

We see:

0" = argmaxBap,,., [log po(@)]

Thus:
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From KL divergence to Model Likelihood

Model Likelihood

We see:

0" = argmaxBap,,., [log po(@)]

Thus:

@ Desirable situation is when pg(X) assign high probability to probable
regions in pgata (X)
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From KL divergence to Model Likelihood

Model Likelihood

We see:

0" = argmaxBap,,., [log po(@)]

Thus:

@ Desirable situation is when pg(X) assign high probability to probable
regions in pgata(X)

@ We have yet a problem: No access to pgata
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From KL divergence to Model Likelihood

Model Likelihood

We see:

0" = axgmaxEay,, (08 70(@)]

Thus:

@ Desirable situation is when pg(X) assign high probability to probable
regions in pgata(X)

@ We have yet a problem: No access to pgata

0 H(pdata(X)) = Epnpynia(x) [108 Pdata ()] is the maximum accessible
objective value where H(pgata (X)) is the entropy defined as:

H(pdata (X)) = Ezpaaa (108 Pdata ()]

Sajjad Amini COMPSC Summer 2024 Deep Autoregressive Models



Model Likelihood Estimation

Model Likelihood Estimation

We are interested in solving the following problem:
0* = argglax E‘Bdiata(X) [logpe (m)]

but we don’t have access to pqata and instead, we have access to independent
samples from the distribution D = {a;} .
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] Likelihood Estimation

Model Likelihood

We are interested in solving the following problem:
0* = arglanax Em"’pdata(x) [logpe (m)]

but we don’t have access to pqata and instead, we have access to independent
samples from the distribution D = {a;} .

v

Solution via Monte Carlo Estimate
Using the Monte Carlo estimate we have:

B paua (%) l0g Po (@ Z log po (a0,
n 1

N
Thus: 0" = arggaa Z:: og po(xy,)
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Thank You!

Thank you for your attention!

Do you have any questions or comments?

Contact Information

Sajjad Amini
Email: samini@Qumass.edu

Deep Aut
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